论文标题
新的Bich $ _ {2} $ - 基于分层超导体LA $ _ $ _ \ MATHRM {0.7} $ CE $ _ \ MATHRM {0.3} $ obisse
Multigap superconductivity in the new BiCh$_{2}$-based layered superconductor La$_\mathrm{0.7}$Ce$_\mathrm{0.3}$OBiSSe
论文作者
论文摘要
与Fe-Pnictides/Chalcogogenides和Cuprates超导体相关的分层二硫化物材料已引起了极大的关注,以了解降低尺寸超导体的物理。我们已经检查了最近发现的BICH $ _2 $ _2 $ _2 $ _ $ _ \ MATHRM {1-x} $ ce $ _ \ Mathrm {x} $ obisse,$ x $ = 0.3,通过横向磁场(TF)Muon Spin旋转测量效率(ZF)的频率(ZF)的频率(ZFIASE)的频率(Z)的频率(Z)的频率(Z)的频率(Z)的频率(Z)的频率(ZFIASE)operative of Resectiation(Z)的范围(ZFIASE)o.测量。通过电阻率和磁化数据验证,已经在2.7 k的低于2.7 k的低于2.7 k的情况下观察到了大量超导性。与单个GAP $ s $相比,同型两间隙$ s $ s $波模型可以用TF- $μ$ SR数据确定磁穿透深度的温度依赖性。此外,从TF- $ $ $ SR数据中,我们确定了伦敦的穿透深度$λ_\ Mathrm {l}(0)$ = 452(3)nm,超过载体的密度$ n_ \ mathrm {s} s}}增强$ m^{*} $ = 1.66(1)$ m_ \ mathrm {e} $。在ZF-$ $ $ $ SR测量中,没有发现自发内部场的签名降低至100 mk,这表明该系统保留了时间反转对称性。
The layered bismuth oxy-sulfide materials, which are structurally related to the Fe-pnictides/chalcogenides and cuprates superconductors, have brought substantial attention for understanding the physics of reduced dimensional superconductors. We have examined the pairing symmetry of recently discovered BiCh$_2$-based superconductor, La$_\mathrm{1-x}$Ce$_\mathrm{x}$OBiSSe with $x$ = 0.3, through transverse field (TF) muon spin rotation measurement, in addition we present the results of magnetization, resistivity and zero field (ZF) muon spin relaxation measurements. Bulk superconductivity has been observed below 2.7 K for $x$ = 0.3, verified by resistivity and magnetization data. The temperature dependence of the magnetic penetration depth has been determined from TF-$μ$SR data can be described by an isotropic two-gap $s+s$ wave model compared to a single gap $s$- or anisotropic $s$-wave models, the resemblance with Fe-pnictides/chalcogenides and MgB$_2$. Furthermore, from the TF-$μ$SR data, we have determined the London's penetration depth $λ_\mathrm{L}(0)$ = 452(3) nm, superconducting carrier's density $n_\mathrm{s}$ = 2.18(1) $\times$10$^{26}$ carriers/m$^{3}$ and effective mass enhancement $m^{*}$ = 1.66(1) $m_\mathrm{e}$, respectively. No signature of spontaneous internal field is found down to 100 mK in ZF-$μ$SR measurement suggest that time-reversal symmetry is preserved in this system.