论文标题

电力价格预测的转移学习

Transfer Learning for Electricity Price Forecasting

论文作者

Gunduz, Salih, Ugurlu, Umut, Oksuz, Ilkay

论文摘要

在世界上所有放松管制的市场中,电价预测是必不可少的任务。对日前电价的准确预测是一个积极的研究领域,可以将来自各个市场的可用数据用作预测的输入。为此任务提出了一系列模型,但是通常会忽略有关如何使用可用大数据的基本问题。在本文中,我们建议将转移学习用作利用其他电价市场信息进行预测的工具。我们在源市场上预先培训神经网络模型,并最终为目标市场进行微调。此外,我们测试了不同的方式来使用来自各种电价市场的丰富输入数据。我们在四个不同的日前市场上的实验表明,转移学习以统计学意义的方式改善了电价预测性能。此外,我们将结果与滚动窗口方案中的状态方法进行比较,以证明转移学习方法的性能。

Electricity price forecasting is an essential task in all the deregulated markets of the world. The accurate prediction of the day-ahead electricity prices is an active research field and available data from various markets can be used as an input for forecasting. A collection of models have been proposed for this task, but the fundamental question on how to use the available big data is often neglected. In this paper, we propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting. We pre-train a neural network model on source markets and finally do a fine-tuning for the target market. Moreover, we test different ways to use the rich input data from various electricity price markets. Our experiments on four different day-ahead markets indicate that transfer learning improves the electricity price forecasting performance in a statistically significant manner. Furthermore, we compare our results with stateof-the-art methods in a rolling window scheme to demonstrate the performance of the transfer learning approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源