论文标题
公制组,单一表示和连续逻辑
Metric groups, unitary representations and continuous logic
论文作者
论文摘要
我们描述了如何以连续逻辑呈现公制组的性质和公制组的单一表示。特别是我们发现$ l_ {ω_1Ω} $ -Axiomatization的舒适性。我们还表明,在本地紧凑的组中,Kazhdan属性{\ bf(t)}否定的一些均匀版本可以看作是一阶Axiomatizable类的结合。我们将看到这些属性何时保存在基本子结构中。
We describe how properties of metric groups and of unitary representations of metric groups can be presented in continuous logic. In particular we find $L_{ω_1 ω}$-axiomatization of amenability. We also show that in the case of locally compact groups some uniform version of the negation of Kazhdan's property {\bf (T)} can be viewed as a union of first-order axiomatizable classes. We will see when these properties are preserved under taking elementary substructures.