论文标题

公制组,单一表示和连续逻辑

Metric groups, unitary representations and continuous logic

论文作者

Ivanov, Aleksander

论文摘要

我们描述了如何以连续逻辑呈现公制组的性质和公制组的单一表示。特别是我们发现$ l_ {ω_1Ω} $ -Axiomatization的舒适性。我们还表明,在本地紧凑的组中,Kazhdan属性{\ bf(t)}否定的一些均匀版本可以看作是一阶Axiomatizable类的结合。我们将看到这些属性何时保存在基本子结构中。

We describe how properties of metric groups and of unitary representations of metric groups can be presented in continuous logic. In particular we find $L_{ω_1 ω}$-axiomatization of amenability. We also show that in the case of locally compact groups some uniform version of the negation of Kazhdan's property {\bf (T)} can be viewed as a union of first-order axiomatizable classes. We will see when these properties are preserved under taking elementary substructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源