论文标题

自适应下调最大化的线性时间算法

Linear-Time Algorithms for Adaptive Submodular Maximization

论文作者

Tang, Shaojie

论文摘要

在本文中,我们开发了两个随机的下管最大化问题的快速算法。我们从研究良好的自适应下调最大化问题开始,但要受到基数约束。我们开发了第一种线性时算法,该算法达到了$(1-1/e-ε)$近似比。值得注意的是,我们算法的时间复杂性为$ O(n \ log \ frac {1}ε)$(功能评估数),它独立于基数约束,其中$ n $是地面集的大小。然后,我们介绍了完全自适应的次数的概念,并开发了一种线性时间算法,以最大化完全自适应的下肠函数,但受分区的矩阵约束。我们表明,我们的算法实现了$ \ frac {1-1/e-e-ε} {4-2/e-2ε} $近似值,仅使用$ o(n \ log \ frac {1}ε)$函数评估的数量。

In this paper, we develop fast algorithms for two stochastic submodular maximization problems. We start with the well-studied adaptive submodular maximization problem subject to a cardinality constraint. We develop the first linear-time algorithm which achieves a $(1-1/e-ε)$ approximation ratio. Notably, the time complexity of our algorithm is $O(n\log\frac{1}ε)$ (number of function evaluations) which is independent of the cardinality constraint, where $n$ is the size of the ground set. Then we introduce the concept of fully adaptive submodularity, and develop a linear-time algorithm for maximizing a fully adaptive submoudular function subject to a partition matroid constraint. We show that our algorithm achieves a $\frac{1-1/e-ε}{4-2/e-2ε}$ approximation ratio using only $O(n\log\frac{1}ε)$ number of function evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源