论文标题
物理量子剂
A Physical Quantum Agent
论文作者
论文摘要
体现智能代理的概念是现代人工智能和机器人技术中的关键概念。从物理上讲,代理是一种嵌入在通过传感器和执行器相互作用的环境中的开放系统。它包含一种学习算法,该算法通过学习环境的学习特征将传感器和执行器结果相关联。在本文中,我们提出了一种简单的光学剂,该光学剂使用光探测和学习其环境的组件。在我们的情况下,量子代理的表现优于经典剂:量子代理使用单个光子脉冲探测世界,在该量子脉冲中,其经典对应物使用弱相干状态,平均光子数等于一个。我们分析了两种药物的热力学行为,表明改善代理的估计值对应于执行器脉冲对传感器进行的平均工作增加。因此,我们的模型提供了一个有用的玩具模型,用于研究机器学习,光学和统计热力学之间的接口。
The concept of an embodied intelligent agent is a key concept in modern artificial intelligence and robotics. Physically, an agent is an open system embedded in an environment that it interacts with through sensors and actuators. It contains a learning algorithm that correlates the sensor and actuator results by learning features about its environment. In this article we present a simple optical agent that uses light to probe and learn components of its environment. In our scenario, the quantum agent outperforms a classical agent: The quantum agent probes the world using single photon pulses, where its classical counterpart uses a weak coherent state with an average photon number equal to one. We analyze the thermodynamic behavior of both agents, showing that improving the agent's estimate of the world corresponds to an increase in average work done on the sensor by the actuator pulse. Thus, our model provides a useful toy model for studying the interface between machine learning, optics, and statistical thermodynamics.