论文标题

点集对部分点云分析进行投票

Point Set Voting for Partial Point Cloud Analysis

论文作者

Zhang, Junming, Chen, Weijia, Wang, Yuping, Vasudevan, Ram, Johnson-Roberson, Matthew

论文摘要

3D传感器的持续改进驱动了算法的开发,以执行点云分析。实际上,近年来,点云分类和细分的技术在某种程度上取得了令人难以置信的性能,部分原因是利用大型合成数据集。不幸的是,当应用于不完整的点云时,这些相同的最新方法的性能较差。现有算法的这种局限性尤其令人担忧,因为由于透视图或其他对象的遮挡,现实世界中3D传感器产生的点云通常是不完整的。本文提出了一个用于部分点云分析的通用模型,其中通过应用本地点集投票策略来推断编码完整点云的潜在特征。特别是,每个本地点集都构造了与潜在空间中的分布相对应的投票,而最佳潜在功能是概率最高的功能。这种方法可确保任何随后的点云分析对部分观察均具有鲁棒性,同时保证所提出的模型能够输出多个可能的结果。本文说明,这种提出的方​​法在形状分类,部分分割和点云完成方面实现了最新的性能。

The continual improvement of 3D sensors has driven the development of algorithms to perform point cloud analysis. In fact, techniques for point cloud classification and segmentation have in recent years achieved incredible performance driven in part by leveraging large synthetic datasets. Unfortunately these same state-of-the-art approaches perform poorly when applied to incomplete point clouds. This limitation of existing algorithms is particularly concerning since point clouds generated by 3D sensors in the real world are usually incomplete due to perspective view or occlusion by other objects. This paper proposes a general model for partial point clouds analysis wherein the latent feature encoding a complete point clouds is inferred by applying a local point set voting strategy. In particular, each local point set constructs a vote that corresponds to a distribution in the latent space, and the optimal latent feature is the one with the highest probability. This approach ensures that any subsequent point cloud analysis is robust to partial observation while simultaneously guaranteeing that the proposed model is able to output multiple possible results. This paper illustrates that this proposed method achieves state-of-the-art performance on shape classification, part segmentation and point cloud completion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源