论文标题
NEF B二分化类别的交点理论
Intersection theory of nef b-divisor classes
论文作者
论文摘要
我们证明,在代数封闭的特征0上定义的投影品种上的任何NEF B分类器类别都是NEF Cartier类的限制。在这一技术结果的基础上,我们构建了一个Nef B型分析器的交集理论,并证明了受DINH和SIBONY的工作启发的Hodge索引定理的几种变体。我们表明,任何大而底线的自由曲线类都是NEF B划分的力量,并将这一说法与Lehmann和Xiao引入的曲线类别的Zariski分解相关。我们的构造使我们可以关联B型分散器空间中包含的各种Banach空间,这些空间已定义在我们以前的工作中。55
We prove that any nef b-divisor class on a projective variety defined over an algebraically closed field of characteristic 0 is a decreasing limit of nef Cartier classes. Building on this technical result, we construct an intersection theory of nef b-divisors, and prove several variants of the Hodge index theorem inspired by the work of Dinh and Sibony. We show that any big and basepoint free curve class is a power of a nef b-divisor, and relate this statement to Zariski decompositions of curves classes introduced by Lehmann and Xiao. Our construction allows us to relate various Banach spaces contained in the space of b-divisors which were defined in our previous work.5