论文标题

学会在对抗性的第一价格拍卖中最佳有效地竞标

Learning to Bid Optimally and Efficiently in Adversarial First-price Auctions

论文作者

Han, Yanjun, Zhou, Zhengyuan, Flores, Aaron, Ordentlich, Erik, Weissman, Tsachy

论文摘要

首先拍卖最近已经席卷了在线广告行业,取代了许多平台上主要的拍卖机制。这种转变给投标人带来了重要的挑战:与第二价格拍卖不同的是,一个人应该如何出价,不再是最佳选择以真实地竞标一个人的私人价值,并且很难知道其他人的竞标行为?在本文中,我们采用了在线学习角度,并解决了学习的基本问题,以在重复的一定价格拍卖中出价,在这种情况下,投标人的私人估值和其他竞标者的竞标都是任意的。当与所有Lipschitz竞标政策竞争时,我们开发了第一个实现$ \ wideTilde {o}(\ sqrt {t})$的最佳最佳在线竞标算法,该算法是遗憾的。这种小说算法建立在以下见解的基础上,即可以利用优秀的专家的存在来提高性能以及原始的等级专家链结构,这两者都可能对在线学习产生独立的兴趣。此外,通过利用问题中存在的产品结构,我们修改了这种算法 - 在其统计上是最佳但计算上不可行的香草 - 对计算上有效且有效的算法,该算法也保留了同样的$ \ widetilde {o}(O}(O})(\ sqrt {\ sqrt {t} {t} {t} {t})。此外,通过不可能的结果,我们强调说,一个人不太可能与更强大的甲骨文(比lipchitz的竞标政策)竞争。最后,我们对从Verizon媒体获得的三个现实世界中的Auction Auction数据集进行了测试,与几种现有的竞标算法相比,我们的算法的出色性能。

First-price auctions have very recently swept the online advertising industry, replacing second-price auctions as the predominant auction mechanism on many platforms. This shift has brought forth important challenges for a bidder: how should one bid in a first-price auction, where unlike in second-price auctions, it is no longer optimal to bid one's private value truthfully and hard to know the others' bidding behaviors? In this paper, we take an online learning angle and address the fundamental problem of learning to bid in repeated first-price auctions, where both the bidder's private valuations and other bidders' bids can be arbitrary. We develop the first minimax optimal online bidding algorithm that achieves an $\widetilde{O}(\sqrt{T})$ regret when competing with the set of all Lipschitz bidding policies, a strong oracle that contains a rich set of bidding strategies. This novel algorithm is built on the insight that the presence of a good expert can be leveraged to improve performance, as well as an original hierarchical expert-chaining structure, both of which could be of independent interest in online learning. Further, by exploiting the product structure that exists in the problem, we modify this algorithm--in its vanilla form statistically optimal but computationally infeasible--to a computationally efficient and space efficient algorithm that also retains the same $\widetilde{O}(\sqrt{T})$ minimax optimal regret guarantee. Additionally, through an impossibility result, we highlight that one is unlikely to compete this favorably with a stronger oracle (than the considered Lipschitz bidding policies). Finally, we test our algorithm on three real-world first-price auction datasets obtained from Verizon Media and demonstrate our algorithm's superior performance compared to several existing bidding algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源