论文标题

真实计划上的gersten综合体

A Gersten complex on real schemes

论文作者

Jin, Fangzhou, Xie, Heng

论文摘要

我们讨论了连贯的二元性与verdier二元性之间的联系,这是通过真实方案上的束带式带状杆套的复合体,并表明这种构造在派生类别中提供了二元对象,该对象与异常的逆映像函数函数$ f^$兼容。这种复合物的过度酒精学与脱水的Gersten-Witt复合物的过度酒精学相吻合,在某些情况下,这可能与拓扑或半geel骨borel-moore同源性有关。

We discuss a connection between coherent duality and Verdier duality via a Gersten-type complex of sheaves on real schemes, and show that this construction gives a dualizing object in the derived category, which is compatible with the exceptional inverse image functor $f^!$. The hypercohomology of this complex coincides with hypercohomology of the sheafified Gersten-Witt complex, which in some cases can be related to topological or semialgebraic Borel-Moore homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源