论文标题
真实计划上的gersten综合体
A Gersten complex on real schemes
论文作者
论文摘要
我们讨论了连贯的二元性与verdier二元性之间的联系,这是通过真实方案上的束带式带状杆套的复合体,并表明这种构造在派生类别中提供了二元对象,该对象与异常的逆映像函数函数$ f^$兼容。这种复合物的过度酒精学与脱水的Gersten-Witt复合物的过度酒精学相吻合,在某些情况下,这可能与拓扑或半geel骨borel-moore同源性有关。
We discuss a connection between coherent duality and Verdier duality via a Gersten-type complex of sheaves on real schemes, and show that this construction gives a dualizing object in the derived category, which is compatible with the exceptional inverse image functor $f^!$. The hypercohomology of this complex coincides with hypercohomology of the sheafified Gersten-Witt complex, which in some cases can be related to topological or semialgebraic Borel-Moore homology.