论文标题

资源意识到的多重级积极学习以进行有效优化

Resource Aware Multifidelity Active Learning for Efficient Optimization

论文作者

Grassi, Francesco, Manganini, Giorgio, Garraffa, Michele, Mainini, Laura

论文摘要

黑匣子优化的传统方法需要大量的评估,对于许多依靠准确的表示和昂贵的模型来评估的工程应用程序,这些评估可能很耗时,不可行且通常是不可行的。贝叶斯优化(BO)方法通过逐渐(积极地)学习沿搜索路径的目标函数的替代模型来搜索全局最佳。贝叶斯优化可以通过多限制方法加速,这些方法利用了目标函数的多个黑框近似,可以在计算上便宜地评估,但仍为搜索任务提供相关信息。通过平行和分布式计算体系结构的可用性提供了进一步的计算利益,这些计算体系结构在主动学习的背景下是开放的机会。本文介绍了资源意识到的主动学习(RAAL)策略,这是一种多倍贝叶斯方案,以加速黑匣子功能的优化。在每个优化步骤中,RAAL过程都计算最佳样本位置和相关的保真度来源,这些来源在对目标函数的并行/分布式评估期间最大程度地获取了信息增益,同时考虑了有限的计算预算。为各种基准问题展示了该方案,并讨论了有关单个保真度和多缩度设置的结果。特别是,我们观察到,RAAL策略在每次迭代中最佳地种子播种,从而可以提高优化任务的速度。

Traditional methods for black box optimization require a considerable number of evaluations which can be time consuming, unpractical, and often unfeasible for many engineering applications that rely on accurate representations and expensive models to evaluate. Bayesian Optimization (BO) methods search for the global optimum by progressively (actively) learning a surrogate model of the objective function along the search path. Bayesian optimization can be accelerated through multifidelity approaches which leverage multiple black-box approximations of the objective functions that can be computationally cheaper to evaluate, but still provide relevant information to the search task. Further computational benefits are offered by the availability of parallel and distributed computing architectures whose optimal usage is an open opportunity within the context of active learning. This paper introduces the Resource Aware Active Learning (RAAL) strategy, a multifidelity Bayesian scheme to accelerate the optimization of black box functions. At each optimization step, the RAAL procedure computes the set of best sample locations and the associated fidelity sources that maximize the information gain to acquire during the parallel/distributed evaluation of the objective function, while accounting for the limited computational budget. The scheme is demonstrated for a variety of benchmark problems and results are discussed for both single fidelity and multifidelity settings. In particular we observe that the RAAL strategy optimally seeds multiple points at each iteration allowing for a major speed up of the optimization task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源