论文标题

随机方形表面和随机多物种的大属渐近几何形状

Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves

论文作者

Delecroix, Vincent, Goujard, Elise, Zograf, Peter, Zorich, Anton

论文摘要

我们研究了大属表面和大属的随机方形表面上的随机封闭多膜的组合几何形状。我们证明,随机多晶状体的原始成分代表具有渐近概率1的线性独立同源性周期,并且它具有渐近概率$ \ sqrt {2}/2 $的原始成分。我们证明了随机方形表面的类似特性。特别是,我们表明,随机方形的表面的所有圆锥形奇异性都属于水平叶的同一叶片,并属于渐近概率1的垂直叶片的同一叶片。 我们表明,随机多菌的组件数量以及$ g $属的随机平方砖表面的最大水平圆柱数量都非常有很好的X型循环数量,因为在$ 3G-3 $元素的对称组上,显式非均匀度量的随机置换量的循环数量都非常有用。特别是,我们证明这些数量的预期值在渐近上等同于$(\ log(6g-6) +γ)/2 + \ log 2 $。 这些结果是基于我们的MASUR的公式 - 全体形态二次差异的模量空间的数量,结合了A.〜Aggarwal和均匀的渐近公式对这种公式进行的深层渐近分析,并与Moduli cur的deLigne-Mumford Cervience cur的$ψ$ celygrasse cur的$ψ$ classe的相互作用的均匀渐近公式相结合。

We study the combinatorial geometry of a random closed multicurve on a surface of large genus and of a random square-tiled surface of large genus. We prove that primitive components of a random multicurve represent linearly independent homology cycles with asymptotic probability 1 and that it is primitive with asymptotic probability $\sqrt{2}/2$. We prove analogous properties for random square-tiled surfaces. In particular, we show that all conical singularities of a random square-tiled surface belong to the same leaf of the horizontal foliation and to the same leaf of the vertical foliation with asymptotic probability 1. We show that the number of components of a random multicurve and the number of maximal horizontal cylinders of a random square-tiled surface of genus $g$ are both very well-approximated by the number of cycles of a random permutation for an explicit non-uniform measure on the symmetric group of $3g-3$ elements. In particular, we prove that the expected value of these quantities is asymptotically equivalent to $(\log(6g-6) + γ)/2 + \log 2$. These results are based on our formula for the Masur--Veech volume of the moduli space of holomorphic quadratic differentials combined with deep large genus asymptotic analysis of this formula performed by A.~Aggarwal and with the uniform asymptotic formula for intersection numbers of $ψ$-classes on the Deligne-Mumford compactification of the moduli space of curves proved by A.~Aggarwal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源