论文标题

使用2D Slice VAE对3D脑MRI的分布进行建模

Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE

论文作者

Volokitin, Anna, Erdil, Ertunc, Karani, Neerav, Tezcan, Kerem Can, Chen, Xiaoran, Van Gool, Luc, Konukoglu, Ender

论文摘要

概率建模一直是医学图像分析中的重要工具,尤其是用于分析脑磁共振图像(MRI)。最近的深度学习技术,用于估计高维分布,特别是变异自动编码器(VAE),为概率建模开辟了新的途径。但是,体积数据的建模仍然是一个挑战,因为对可用的计算和培训数据的限制使其很难有效地利用VAE,这是2D图像的发达。我们提出了一种方法,通过将2D Slice VAE与捕获切片之间关系的高斯模型相结合,以模拟3D MR脑体积分布。我们通过在切片方向上估算2D模型潜在空间中的样本均值和协方差。这种合并的模型使我们可以采样潜在变量的新连贯堆栈,以将其解码为体积的切片。我们还引入了一种新型的评估方法,用于生成的体积,以量化其分割符合真实大脑解剖结构的分割程度。我们证明,根据传统指标和提议的评估,我们提出的模型在高质量的高质量上产生高质量的销量具有竞争力。

Probabilistic modelling has been an essential tool in medical image analysis, especially for analyzing brain Magnetic Resonance Images (MRI). Recent deep learning techniques for estimating high-dimensional distributions, in particular Variational Autoencoders (VAEs), opened up new avenues for probabilistic modeling. Modelling of volumetric data has remained a challenge, however, because constraints on available computation and training data make it difficult effectively leverage VAEs, which are well-developed for 2D images. We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices. We do so by estimating the sample mean and covariance in the latent space of the 2D model over the slice direction. This combined model lets us sample new coherent stacks of latent variables to decode into slices of a volume. We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy. We demonstrate that our proposed model is competitive in generating high quality volumes at high resolutions according to both traditional metrics and our proposed evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源