论文标题
最先进的三维数值模型告知的核心溢出超新星中微子排放和检测
Core-collapse supernova neutrino emission and detection informed by state-of-the-art three-dimensional numerical models
论文作者
论文摘要
基于我们最近的三维核心折叠超新星(CCSN)模拟,包括爆炸和非探索模型,我们研究了代表性的陆地中微子观测站中的详细中微子信号,Super-Kamiokande(Hyper-Kamiokande),Dune,Juno,Juno和Icecube。我们发现,1D和3D之间中微子信号差异的物理起源主要是原始中微子-Sneutron-Star(PNS)对流。我们研究了中微子信号的时间和角变化,并讨论了由于非探索模型而出现时螺旋静电吸收冲击不稳定性(Spiral SASI)驱动的时间变化的可检测性。此外,我们确定事件速率可能存在较大的角度不对称性($ \ gtrsim 50 \%$),但是时间整合信号具有相对适度的不对称性($ \ sellysim 20 \%$)。这两种特征都与自维持的不对称性(LESA)和螺旋SASI相关。此外,我们的分析表明,总中微子能量(音调)与每个检测器中中微子事件的累积数量之间存在有趣的相关性,可以促进实际观察结果的数据分析。我们通过将新型的光谱重建技术应用于来自多个检测器的数据来证明中微子所有口味的中微子能谱的检索。我们发现,如果到CCSN的距离为$ \ sillsim 6 $ kpc,则这种新方法能够在$ \ sim $ 20 \%的错误中估算音调。
Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star (PNS) convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral Standing Accretion Shock Instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate ($\gtrsim 50 \%$), but that the time-integrated signal has a relatively modest asymmetry ($\lesssim 20 \%$). Both features are associated with the lepton-number emission self-sustained asymmetry (LESA) and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavors of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of $\sim$20\% if the distance to the CCSN is $\lesssim 6$ kpc.