论文标题
通过使用图像翻译生成反事实来发现科学发现
Scientific Discovery by Generating Counterfactuals using Image Translation
论文作者
论文摘要
模型解释技术在理解模型性能的来源并使决策透明方面起着至关重要的作用。在这里,我们研究解释技术是否也可以用作科学发现的机制。我们做出了三个贡献:首先,我们提出一个框架,将预测从解释技术转换为发现机制。其次,我们展示了如何将生成模型与黑盒预测变量结合使用,以生成可以进行严格审查的假设(没有人类先验)。第三,通过这些技术,我们研究了预测糖尿病黄斑水肿(DME)的视网膜图像的分类模型,最近的工作表明,对这些图像进行训练的CNN可能是在图像中学习新颖特征。我们证明了所提出的框架能够解释潜在的科学机制,从而弥合了模型的绩效与人类理解之间的鸿沟。
Model explanation techniques play a critical role in understanding the source of a model's performance and making its decisions transparent. Here we investigate if explanation techniques can also be used as a mechanism for scientific discovery. We make three contributions: first, we propose a framework to convert predictions from explanation techniques to a mechanism of discovery. Second, we show how generative models in combination with black-box predictors can be used to generate hypotheses (without human priors) that can be critically examined. Third, with these techniques we study classification models for retinal images predicting Diabetic Macular Edema (DME), where recent work showed that a CNN trained on these images is likely learning novel features in the image. We demonstrate that the proposed framework is able to explain the underlying scientific mechanism, thus bridging the gap between the model's performance and human understanding.