论文标题
新一代行星种群综合(NGPPS)。 I.伯尔尼全球行星形成和进化,模型测试和新兴行星系统的模型
The New Generation Planetary Population Synthesis (NGPPS). I. Bern global model of planet formation and evolution, model tests, and emerging planetary systems
论文作者
论文摘要
目标。将理论模型与观测值进行比较,使人们可以向了解行星系统迈出关键的一步。但是,它需要一个模型能够(i)预测所有必要的可观察量(不仅是质量和轨道,还可以预测半径,灯光,亮度,幅度或蒸发速率),(ii)解决相关行星质量(从火星质量到超级固定器到超级固定器)的较大范围和距离(从星际上到宽大的OrbiTs)。方法。我们已经建立了一个基于核心积聚范式的III代伯尔尼生成模型的全球端到端行星形成和进化模型。该模型尽可能直接地求解气盘的结构和演变的基础微分方程,行星的动力状态,行星的内部结构产生其行星和气体吸积速率,盘式驱动的轨道迁移以及通过完整的N型N型计算的同时形成行星的重力相互作用。重要的是,该模型还遵循编队后行星对Gigayear时标的长期演变,包括冷却和收缩的影响,大气逃生,腹胀和恒星潮汐。结果。为了测试模型,我们将其与太阳系形成的经典场景进行了比较。对于陆地行星,我们发现我们获得了一个巨大的冲击阶段,提供足够的胚胎(〜100)最初是在圆盘中放置的。对于巨型行星,我们发现木星质量行星必须在散布气盘前不久就会吸收其核心,以防止强烈的内向迁移,这将使它们带到椎间盘的内边缘。结论。该模型可以形成具有广泛特性的行星系统。我们发现,只有陆地行星的系统通常是井井有条的,而巨型行星轴承系统没有这种相似性。
Aims. Comparing theoretical models with observations allows one to make key step forward towards an understanding of planetary systems. It however requires a model able to (i) predict all the necessary observable quantities (not only masses and orbits, but also radii, luminosities, magnitudes, or evaporation rates) and (ii) address the large range in relevant planetary masses (from Mars mass to super-Jupiters) and distances (from stellar-grazing to wide orbits). Methods. We have developed a combined global end-to-end planetary formation and evolution model, the Generation III Bern model, based on the core accretion paradigm. This model solves as directly as possible the underlying differential equations for the structure and evolution of the gas disc, the dynamical state of the planetesimals, the internal structure of the planets yielding their planetesimal and gas accretion rates, disc-driven orbital migration, and the gravitational interaction of concurrently forming planets via a full N-body calculation. Importantly, the model also follows the long-term evolution of the planets on Gigayear timescales after formation including the effects of cooling and contraction, atmospheric escape, bloating, and stellar tides. Results. To test the model, we compared it with classical scenarios of Solar System formation. For the terrestrial planets, we find that we obtain a giant impact phase provided enough embryos (~100) are initially emplaced in the disc. For the giant planets, we find that Jupiter-mass planets must accrete their core shortly before the dispersal of the gas disc to prevent strong inward migration that would bring them to the inner edge of the disc. Conclusions. The model can form planetary systems with a wide range of properties. We find that systems with only terrestrial planets are often well-ordered while giant-planet bearing systems show no such similarity.