论文标题

深层上下文临床预测和反向蒸馏

Deep Contextual Clinical Prediction with Reverse Distillation

论文作者

Kodialam, Rohan S., Boiarsky, Rebecca, Lim, Justin, Dixit, Neil, Sai, Aditya, Sontag, David

论文摘要

医疗保健提供者越来越多地利用机器学习来预测患者的结果以进行有意义的干预措施。但是,尽管在这一领域进行了创新,但深度学习模型通常很难匹配浅线性模型的性能,以预测这些结果,因此很难在实践中利用此类技术。在这项工作中,在保险索赔的临床预测任务的推动下,我们提出了一种称为“反向蒸馏”的新技术,该技术通过使用高性能的线性模型来初始化,从而预测了深层模型。我们利用保险索赔数据集的纵向结构,通过反向蒸馏或SARD进行自我关注,该体系结构利用了上下文嵌入,时间嵌入和自我注意力的机制以及最严格的培训。 SARD在多种临床预测结果上的表现优于最先进的方法,其中消融研究表明,反向蒸馏是这些改进的主要驱动力。代码可在https://github.com/clinicalml/omop-learn上找到。

Healthcare providers are increasingly using machine learning to predict patient outcomes to make meaningful interventions. However, despite innovations in this area, deep learning models often struggle to match performance of shallow linear models in predicting these outcomes, making it difficult to leverage such techniques in practice. In this work, motivated by the task of clinical prediction from insurance claims, we present a new technique called Reverse Distillation which pretrains deep models by using high-performing linear models for initialization. We make use of the longitudinal structure of insurance claims datasets to develop Self Attention with Reverse Distillation, or SARD, an architecture that utilizes a combination of contextual embedding, temporal embedding and self-attention mechanisms and most critically is trained via reverse distillation. SARD outperforms state-of-the-art methods on multiple clinical prediction outcomes, with ablation studies revealing that reverse distillation is a primary driver of these improvements. Code is available at https://github.com/clinicalml/omop-learn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源