论文标题
稀疏峰反卷积的自适应级子
Adaptive Superresolution in Deconvolution of Sparse Peaks
论文作者
论文摘要
本文的目的是调查由稀疏先验驱动的反卷积的超分辨率。观察到的信号是具有连续内核的原始信号的卷积。在先验的知识中,可以将原始信号视为Dirac Delta峰的稀疏组合,我们试图通过在计算网格上解决有限的Dimensional Convex问题来估计这些峰的位置和振幅。因为,原始信号的支持可能会或可能不会在该网格上,因此使用L1-norm稀疏性研究了稀疏峰值的离散反卷积,我们确认最近的观察结果是,从规范上讲,离散重建将导致与真实峰位置相邻的网格点的多个峰值。为了使该问题的复杂性拥有,我们仔细分析了网格上单个峰的去横线,并就重建幅度对确切峰位置的依赖性有了深刻的了解。反过来,这使我们能够推断出有关恢复确切峰位置的更多信息,即执行超分辨率。我们详细分析了可能出现的可能情况并基于我们的理论发现,我们提出了一种自动驱动的自适应网格方法,该方法允许在一维和多维空间中执行超分辨率。考虑到当前的研究可以为开发更健壮的算法提供进一步的步骤,以检测荧光显微镜中的单分子或在光谱分析中鉴定特征频率的鉴定,我们在一个和二维传点中使用低分辨率的点源(峰值)来证明拟议方法如何恢复稀疏信号。
The aim of this paper is to investigate superresolution in deconvolution driven by sparsity priors. The observed signal is a convolution of an original signal with a continuous kernel.With the prior knowledge that the original signal can be considered as a sparse combination of Dirac delta peaks, we seek to estimate the positions and amplitudes of these peaks by solving a finite dimensional convex problem on a computational grid. Because, the support of the original signal may or may not be on this grid, by studying the discrete deconvolution of sparse peaks using L1-norm sparsity prior, we confirm recent observations that canonically the discrete reconstructions will result in multiple peaks at grid points adjacent to the location of the true peak. Owning to the complexity of this problem, we analyse carefully the de-convolution of single peaks on a grid and gain a strong insight about the dependence of the reconstructed magnitudes on the exact peak location. This in turn allows us to infer further information on recovering the location of the exact peaks i.e. to perform super-resolution. We analyze in detail the possible cases that can appear and based on our theoretical findings, we propose an self-driven adaptive grid approach that allows to perform superresolution in one-dimensional and multi-dimensional spaces. With the view that the current study can provide a further step in the development of more robust algorithms for the detection of single molecules in fluorescence microscopy or identification of characteristic frequencies in spectral analysis, we demonstrate how the proposed approach can recover sparse signals using simulated clusters of point sources (peaks) of low-resolution in one and two-dimensional spaces.