论文标题

同型类型理论中的Hurewicz定理

The Hurewicz theorem in Homotopy Type Theory

论文作者

Christensen, J. Daniel, Scoccola, Luis

论文摘要

我们证明了Hurewicz定理在同义类型理论中,即,对于$ x $ a的指向,$(n-1)$ - 连接的类型$(n \ geq 1)$和$ a $ a $ a abelian群体,有一个天然的同构$π_n(x)^{ab}^{ab} \ otimes a \ conc $ concy \ tilde a \ tilde a}同源性的同型组的Abelianization。我们还计算了类型的粉碎产品的连通性,并将最低的非平凡同型组作为张量产品。在此过程中,我们研究岩浆,环空间,连接的盖子和前线,并使用$ 1 $合并的类别来表达自然性和Yoneda引理。 由于同型类型理论在所有$ \ infty $ toposes中都具有模型,因此我们的结果可以看作是将空间的已知结果扩展到所有其他$ \ infty $ toposes。

We prove the Hurewicz theorem in homotopy type theory, i.e., that for $X$ a pointed, $(n-1)$-connected type $(n \geq 1)$ and $A$ an abelian group, there is a natural isomorphism $π_n(X)^{ab} \otimes A \cong \tilde{H}_n(X; A)$ relating the abelianization of the homotopy groups with the homology. We also compute the connectivity of a smash product of types and express the lowest non-trivial homotopy group as a tensor product. Along the way, we study magmas, loop spaces, connected covers and prespectra, and we use $1$-coherent categories to express naturality and for the Yoneda lemma. As homotopy type theory has models in all $\infty$-toposes, our results can be viewed as extending known results about spaces to all other $\infty$-toposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源