论文标题
Fege纳米球中的三维手性磁化结构
Three-Dimensional Chiral Magnetization Structures in FeGe Nanospheres
论文作者
论文摘要
在具有内在的Dzyaloshinsky-Moriya相互作用的材料中,Skyrmions,旋转螺旋和其他手性磁化结构显示出独特的特性,这些特性一直是薄膜几何形状的激烈研究的主题。在这里,我们研究了FeGE纳米球中三维手性磁化结构的形成,该结构是通过微磁性有限元模拟的。尽管具有深度的亚微米粒径,但我们发现了令人惊讶的大量不同平衡状态,即螺旋,梅隆,天际,刺耳的态和准饱和状态。这些状态的分布在显示基态作为外场和粒子半径的函数的相图中总结。单个纳米颗粒中可能的磁化状态的这种不寻常的多样性对于多状态内存设备可能是有用的功能。我们还表明,在这些系统中,磁极 - 二极分子相互作用几乎可以忽略不计,这表明颗粒可以在没有不必要的耦合的情况下以高密度排列。
Skyrmions, spin spirals, and other chiral magnetization structures developing in materials with intrinsic Dzyaloshinsky-Moriya Interaction display unique properties that have been the subject of intense research in thin-film geometries. Here we study the formation of three-dimensional chiral magnetization structures in FeGe nanospheres by means of micromagnetic finite-element simulations. In spite of the deep sub-micron particle size, we find a surprisingly large number of distinct equilibrium states, namely, helical, meron, skyrmion, chiral-bobber and quasi-saturation state. The distribution of these states is summarized in a phase diagram displaying the ground state as a function of the external field and particle radius. This unusual multiplicity of possible magnetization states in individual nanoparticles could be a useful feature for multi-state memory devices. We also show that the magneto-dipolar interaction is almost negligible in these systems, which suggests that the particles could be arranged at high density without experiencing unwanted coupling.