论文标题
基于雅各布的概率显着地图攻击
Probabilistic Jacobian-based Saliency Maps Attacks
论文作者
论文摘要
已知神经网络分类器(NNC)容易受到输入的恶意对抗性扰动,包括那些修改一小部分输入功能的输入功能或$ L_0 $攻击。有效而快速的$ L_0 $攻击,例如广泛使用的雅各布的显着性图攻击(JSMA)对于愚弄NNC是实用的,但也可以提高其稳健性。在本文中,我们表明,通过输出概率来惩罚JSMA的显着性图,而NNC的输入功能允许获得更强大的攻击算法,以更好地考虑到每个输入的特征。这导致我们引入了改进的JSMA版本,称为加权JSMA(WJSMA)和Taylor JSMA(TJSMA),并通过在三个不同的数据集上进行了各种白盒和黑盒实验(MNIST,CIFAR-10和GTSRB)上的各种白盒和黑盒实验,它们比JSMA(MNIST,CIFAR-10和GTSRB)具有显着性和不适合JSS的jsma(MNIST,CIFAR-10和GTSRB),并且比最初的目标更加受欢迎,并且具有更快的目标。实验还证明,在某些情况下,与Carlini-Wagner(CW)$ L_0 $攻击相比,我们的攻击的竞争结果非常具竞争力,而与JSMA这样的剩余速度明显更快(WJSMA和TJSMA比CIFAR-10上的CW $ L_0 $更快地超过50倍以上)。因此,我们的新攻击在JSMA和CW之间为$ L_0 $实时对抗测试(例如先前引用的攻击)提供了良好的权衡。代码可通过链接https://github.com/probabilistic-jsmas/probabilistic-jsmas公开获得。
Neural network classifiers (NNCs) are known to be vulnerable to malicious adversarial perturbations of inputs including those modifying a small fraction of the input features named sparse or $L_0$ attacks. Effective and fast $L_0$ attacks, such as the widely used Jacobian-based Saliency Map Attack (JSMA) are practical to fool NNCs but also to improve their robustness. In this paper, we show that penalising saliency maps of JSMA by the output probabilities and the input features of the NNC allows to obtain more powerful attack algorithms that better take into account each input's characteristics. This leads us to introduce improved versions of JSMA, named Weighted JSMA (WJSMA) and Taylor JSMA (TJSMA), and demonstrate through a variety of white-box and black-box experiments on three different datasets (MNIST, CIFAR-10 and GTSRB), that they are both significantly faster and more efficient than the original targeted and non-targeted versions of JSMA. Experiments also demonstrate, in some cases, very competitive results of our attacks in comparison with the Carlini-Wagner (CW) $L_0$ attack, while remaining, like JSMA, significantly faster (WJSMA and TJSMA are more than 50 times faster than CW $L_0$ on CIFAR-10). Therefore, our new attacks provide good trade-offs between JSMA and CW for $L_0$ real-time adversarial testing on datasets such as the ones previously cited. Codes are publicly available through the link https://github.com/probabilistic-jsmas/probabilistic-jsmas.