论文标题

AC最佳功率流量的学习增强学习的准Newton方法

A Learning-boosted Quasi-Newton Method for AC Optimal Power Flow

论文作者

Baker, Kyri

论文摘要

电网运算符通常全天解决大规模的非convex最佳功率流(OPF)问题,以确定发电机的最佳设定点,同时遵守物理约束。尽管牛顿 - 拉夫森(Newton-Raphson)是许多OPF求解器的核心,但在数字上可能是缓慢而不稳定的。为了减少与计算完整的雅各布及其倒数相关的计算负担,许多准Newton方法试图通过利用近似雅各布矩阵来找到最佳条件的解决方案。在本文中,提出了一种基于机器学习的准Newton方法,该方法对候选最佳解决方案进行了迭代更新,而无需计算Jacobian或近似Jacobian矩阵。提出的基于学习的算法利用了带有反馈的深神网络。通过正确选择权重和激活功能,该模型成为收缩映射,可以保证收敛。最多1,354台总线的网络显示的结果表明,该方法能够非常快速地找到AC OPF的近似解决方案。

Power grid operators typically solve large-scale, nonconvex optimal power flow (OPF) problems throughout the day to determine optimal setpoints for generators while adhering to physical constraints. Despite being at the heart of many OPF solvers, Newton-Raphson can be slow and numerically unstable. To reduce the computational burden associated with calculating the full Jacobian and its inverse, many Quasi-Newton methods attempt to find a solution to the optimality conditions by leveraging an approximate Jacobian matrix. In this paper, a Quasi-Newton method based on machine learning is presented which performs iterative updates for candidate optimal solutions without having to calculate a Jacobian or approximate Jacobian matrix. The proposed learning-based algorithm utilizes a deep neural network with feedback. With proper choice of weights and activation functions, the model becomes a contraction mapping and convergence can be guaranteed. Results shown for networks up to 1,354 buses indicate the proposed method is capable of finding approximate solutions to AC OPF very quickly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源