论文标题
神经网络的间隔通用近似
Interval Universal Approximation for Neural Networks
论文作者
论文摘要
为了验证神经网络的安全性和鲁棒性,研究人员成功地采用了抽象解释,主要使用间隔抽象领域。在本文中,我们研究了神经网络验证的间隔域的理论能力和限制。 首先,我们介绍间隔通用近似(IUA)定理。 IUA表明,神经网络不仅可以近似任何连续函数$ f $(通用近似),而且我们已经知道了数十年,而且可以使用任何持续的激活功能找到一个神经网络,其间隔界限的间隔范围是$ f $的设置语义的任意接近近似值(将$ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ fo $ f $ for in Aet Entputs》中。我们称此近似间隔近似的概念。我们的定理概括了Baader等人的最新结果。 (2020)从依赖到我们称之为可挤压功能的丰富激活功能。此外,IUA定理意味着我们始终可以使用几乎任何实际的激活功能在$ \ ell_ \ infty $ -NORM下构建可证明的强大神经网络。 其次,我们研究了构建可与精确间隔分析的神经网络的计算复杂性。这是一个至关重要的问题,因为我们对IUA的建设性证明在近似域的大小上是指数的。我们将这个问题归结为近似具有可倾斜激活功能的神经网络范围的问题。我们表明,范围近似问题(RA)是$Δ_2$ - 间隔问题,它严格比$ \ Mathsf {np} $ - 完整问题要困难,假设$ \ Mathsf {conp} \ not \ not \ subset \ subset \ subset \ mathsf {np} $。结果,IUA是一个固有的困难问题:无论我们认为要实现间隔近似的抽象域或计算工具,都没有有效的通用近似器的有效构造。
To verify safety and robustness of neural networks, researchers have successfully applied abstract interpretation, primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the interval domain for neural-network verification. First, we introduce the interval universal approximation (IUA) theorem. IUA shows that neural networks not only can approximate any continuous function $f$ (universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrarily close approximation of the set semantics of $f$ (the result of applying $f$ to a set of inputs). We call this notion of approximation interval approximation. Our theorem generalizes the recent result of Baader et al. (2020) from ReLUs to a rich class of activation functions that we call squashable functions. Additionally, the IUA theorem implies that we can always construct provably robust neural networks under $\ell_\infty$-norm using almost any practical activation function. Second, we study the computational complexity of constructing neural networks that are amenable to precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size of the approximation domain. We boil this question down to the problem of approximating the range of a neural network with squashable activation functions. We show that the range approximation problem (RA) is a $Δ_2$-intermediate problem, which is strictly harder than $\mathsf{NP}$-complete problems, assuming $\mathsf{coNP}\not\subset \mathsf{NP}$. As a result, IUA is an inherently hard problem: No matter what abstract domain or computational tools we consider to achieve interval approximation, there is no efficient construction of such a universal approximator.