论文标题

数据驱动的地球物理:从字典学习到深度学习

Data-driven geophysics: from dictionary learning to deep learning

论文作者

Yu, Siwei, Ma, Jianwei

论文摘要

了解地球物理现象的原理是一项必不可少的挑战。长期以来,“模型驱动”方法支持地球物理的发展。但是,这种方法遭受维数的诅咒,可能不准确地对地下进行建模。 “数据驱动”技术可能会通过越来越多的地球物理数据克服这些问题。在本文中,我们回顾了从字典学习到各种地球物理场景中深度学习的数据驱动方法的基本概念和最新进展。包括数据处理,反转和解释在内的探索地球物理学将主要集中。还审查了有关地球,地震,水资源,大气科学,卫星雷莫感觉传感和太空科学的地球科学的人工智能应用。我们为初学者和感兴趣的地球物理读者提供了一个编码教程和摘要,以快速探索深度学习。为将来的研究提供了一些有希望的方向,涉及地球物理中的深度学习,例如无监督的学习,转移学习,多模式深度学习,联合学习,不确定性估计和激活学习。

Understanding the principles of geophysical phenomena is an essential and challenging task. "Model-driven" approaches have supported the development of geophysics for a long time; however, such methods suffer from the curse of dimensionality and may inaccurately model the subsurface. "Data-driven" techniques may overcome these issues with increasingly available geophysical data. In this article, we review the basic concepts of and recent advances in data-driven approaches from dictionary learning to deep learning in a variety of geophysical scenarios. Explorational geophysics including data processing, inversion and interpretation will be mainly focused. Artificial intelligence applications on geoscience involving deep Earth, earthquake, water resource, atmospheric science, satellite remoe sensing and space sciences are also reviewed. We present a coding tutorial and a summary of tips for beginners and interested geophysical readers to rapidly explore deep learning. Some promising directions are provided for future research involving deep learning in geophysics, such as unsupervised learning, transfer learning, multimodal deep learning, federated learning, uncertainty estimation, and activate learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源