论文标题
深层神经活动的跨主题映射
Deep Cross-Subject Mapping of Neural Activity
论文作者
论文摘要
客观的。在本文中,我们考虑了跨主体解码的问题,其中使用给定受试者的前额叶皮层收集的神经活动数据(目的地)用于解码不同受试者的神经活动(来源)的神经活动。方法。我们将神经活动映射的问题提出了概率框架,在该框架中我们采用了深层的生成建模。我们提出的算法使用深层有条件的变分自动编码器来推断源主体的神经活动的表示为神经解码的目的地主体的适当特征空间。结果。我们在一个实验数据集上验证了我们的方法,其中两个猕猴将视觉扫视执行到八个目标位置之一。结果表明,超过$ 8 \%$的峰值跨主题解码改善比特定于主题的解码。结论。我们证明,对一个受试者的神经活动信号训练的神经解码器可以用来鲁棒地解码具有高可靠性的不同受试者的运动意图。尽管神经活动信号的非平稳性和记录条件的特定主题变化,但这是实现的。意义。本文报道的结果是朝着跨种群中概括的跨受试者脑机构发展的重要一步。
Objective. In this paper, we consider the problem of cross-subject decoding, where neural activity data collected from the prefrontal cortex of a given subject (destination) is used to decode motor intentions from the neural activity of a different subject (source). Approach. We cast the problem of neural activity mapping in a probabilistic framework where we adopt deep generative modelling. Our proposed algorithm uses deep conditional variational autoencoder to infer the representation of the neural activity of the source subject into an adequate feature space of the destination subject where neural decoding takes place. Results. We verify our approach on an experimental data set in which two macaque monkeys perform memory-guided visual saccades to one of eight target locations. The results show a peak cross-subject decoding improvement of $8\%$ over subject-specific decoding. Conclusion. We demonstrate that a neural decoder trained on neural activity signals of one subject can be used to robustly decode the motor intentions of a different subject with high reliability. This is achieved in spite of the non-stationary nature of neural activity signals and the subject-specific variations of the recording conditions. Significance. The findings reported in this paper are an important step towards the development of cross-subject brain-computer that generalize well across a population.