论文标题
基于伴随的变异方法,用于构建高维混沌系统的周期性轨道
Adjoint-based variational method for constructing periodic orbits of high-dimensional chaotic systems
论文作者
论文摘要
从低维非线性微分方程到包括流体湍流在内的高维时空系统的系统中的混乱动力学,由管理方程的非差异,重复的时间周期溶液支持。这些不稳定的周期轨道捕获了湍流动力学的关键特征,并且足够大的轨道有望预测混乱流的统计数据。高维时空混乱系统的计算周期轨道仍然具有挑战性,因为已知的方法要么表现出差的收敛性能,因为它们基于混乱系统的时间建设,从而导致指数误差放大;或者他们需要构建非常昂贵的Jacobian矩阵。我们提出了一种不受指数误差扩增影响的新的无基质方法,全球收敛,可以应用于高维系统。基于伴随的变分方法在封闭环的空间中构建了一个初始值问题,因此周期性轨道吸引了循环范围的固定点。我们介绍了通用自主系统的方法。一维的库拉莫托 - 摩托岛方程的实现表明,周期性轨道的稳健融合。收敛不需要准确的初始猜测,并且与各自轨道的周期无关。
Chaotic dynamics in systems ranging from low-dimensional nonlinear differential equations to high-dimensional spatio-temporal systems including fluid turbulence is supported by non-chaotic, exactly recurring time-periodic solutions of the governing equations. These unstable periodic orbits capture key features of the turbulent dynamics and sufficiently large sets of orbits promise a framework to predict the statistics of the chaotic flow. Computing periodic orbits for high-dimensional spatio-temporally chaotic systems remains challenging as known methods either show poor convergence properties because they are based on time-marching of a chaotic system causing exponential error amplification; or they require constructing Jacobian matrices which is prohibitively expensive. We propose a new matrix-free method that is unaffected by exponential error amplification, is globally convergent and can be applied to high-dimensional systems. The adjoint-based variational method constructs an initial value problem in the space of closed loops such that periodic orbits are attracting fixed points for the loop-dynamics. We introduce the method for general autonomous systems. An implementation for the one-dimensional Kuramoto-Sivashinsky equation demonstrates the robust convergence of periodic orbits underlying spatio-temporal chaos. Convergence does not require accurate initial guesses and is independent of the period of the respective orbit.