论文标题

使用个人级别行为线索评估学生团体协作的机器学习方法

A Machine Learning Approach to Assess Student Group Collaboration Using Individual Level Behavioral Cues

论文作者

Som, Anirudh, Kim, Sujeong, Lopez-Prado, Bladimir, Dhamija, Svati, Alozie, Nonye, Tamrakar, Amir

论文摘要

K-12教室始终将协作作为他们学习经验的一部分。但是,由于大型教室的规模,老师没有时间正确评估每个学生并给予他们反馈。在本文中,我们建议使用简单的基于深度学习的机器学习模型自动根据小组中所有学生的个人角色和个人级别行为的注释来自动确定小组的整体协作质量。在构建这些模型时,我们会遇到以下挑战:1)有限的培训数据,2)严重的类标签失衡。我们通过使用混合数据增强的受控变体来解决这些挑战,这是一种通过线性组合不同的数据样本及其相应类标签来生成其他数据样本的方法。此外,我们问题的标签空间表现出有序结构。我们利用了这一事实,并使用序数 - 内向损失函数进行探索,并在有或没有混合过程中研究其效果。

K-12 classrooms consistently integrate collaboration as part of their learning experiences. However, owing to large classroom sizes, teachers do not have the time to properly assess each student and give them feedback. In this paper we propose using simple deep-learning-based machine learning models to automatically determine the overall collaboration quality of a group based on annotations of individual roles and individual level behavior of all the students in the group. We come across the following challenges when building these models: 1) Limited training data, 2) Severe class label imbalance. We address these challenges by using a controlled variant of Mixup data augmentation, a method for generating additional data samples by linearly combining different pairs of data samples and their corresponding class labels. Additionally, the label space for our problem exhibits an ordered structure. We take advantage of this fact and also explore using an ordinal-cross-entropy loss function and study its effects with and without Mixup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源