论文标题

快速分类的时间序列的GEOSTAT表示

GeoStat Representations of Time Series for Fast Classification

论文作者

Ravier, Robert J., Soltani, Mohammadreza, Simões, Miguel, Garagic, Denis, Tarokh, Vahid

论文摘要

时间序列分类的最新进展主要集中在采用深度学习或利用其他机器学习模型进行功能提取的方法上。尽管成功,但它们的力量通常符合计算复杂性的要求。在本文中,我们介绍了时间序列的Geostat表示。 GeoStat表示基于对轨迹分类的最新方法的概括,并总结了时间序列的信息,该信息的综合统计信息(可能是窗口)易于计算的分布的综合统计数据,不需要动态的时间扭曲。使用的功能是直观的,需要最小的参数调整。我们对许多真实数据集进行了详细的评估,这表明接受了这些表示的简单KNN和SVM分类器相对于需要大量计算能力的现代单个模型方法表现出令人惊讶的性能,在许多情况下都可以实现艺术状态。特别是,我们表明,这种方法在涉及渔船分类的具有挑战性的数据集上取得了良好的性能,尽管在培训和评估这项艺术状态的培训和评估中,但我们的方法相对于艺术的状态达到了良好的性能。

Recent advances in time series classification have largely focused on methods that either employ deep learning or utilize other machine learning models for feature extraction. Though successful, their power often comes at the requirement of computational complexity. In this paper, we introduce GeoStat representations for time series. GeoStat representations are based off of a generalization of recent methods for trajectory classification, and summarize the information of a time series in terms of comprehensive statistics of (possibly windowed) distributions of easy to compute differential geometric quantities, requiring no dynamic time warping. The features used are intuitive and require minimal parameter tuning. We perform an exhaustive evaluation of GeoStat on a number of real datasets, showing that simple KNN and SVM classifiers trained on these representations exhibit surprising performance relative to modern single model methods requiring significant computational power, achieving state of the art results in many cases. In particular, we show that this methodology achieves good performance on a challenging dataset involving the classification of fishing vessels, where our methods achieve good performance relative to the state of the art despite only having access to approximately two percent of the dataset used in training and evaluating this state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源