论文标题

随机部分和随机单纯性不等式

Random section and random simplex inequality

论文作者

Litvak, Alexander E., Zaporozhets, Dmitry

论文摘要

考虑一些凸面$ k \ subset \ mathbb r^d $。令$ x_1,\ dots,x_k $,其中$ k \ leq d $是独立且均匀地选择$ k $的随机点,让$ξ_k$是均匀分布的随机线性$ k $平面。我们表明,对于$ p \ geq-d+k+1 $,\ [\ mathbb e \,| k \capξ_k|^{d+p} \ leq c_ {d,d,k,k,p} \ cdot | k |^k |^k \ \,\,\,\,\,\ mathb e \,| \]其中$ | \ cdot | $和$ \ mathrm {cons} $表示通讯尺寸和凸形船体的卷。常数$ c_ {d,k,p} $是这样的,对于$ k> 1 $,当时且仅当$ k $是以原点为中心的椭圆形,而对于$ k = 1 $,不平等将不等式变成平等。如果$ p = 0 $,则不等式将减少到Busemann交叉点不等式,如果$ k = D $ - 到Busemann Random Simplex不等式。我们还提出了这种不平等现象的仿射版本,该版本类似地概括了施耐德不平等和Blaschke-Grömer不平等。

Consider some convex body $K\subset\mathbb R^d$. Let $X_1,\dots, X_k$, where $k\leq d$, be random points independently and uniformly chosen in $K$, and let $ξ_k$ be a uniformly distributed random linear $k$-plane. We show that for $p\geq-d+k+1$, \[ \mathbb E\,|K\capξ_k|^{d+p}\leq c_{d,k,p} \cdot|K|^k\, \,\mathbb E\,|\mathrm{conv}(0,X_1, \dots,X_k)|^p, \] where $|\cdot|$ and $\mathrm{conv}$ denote the volume of correspondent dimension and the convex hull. The constant $c_{d,k,p}$ is such that for $k>1$ the equality holds if and only if $K$ is an ellipsoid centered at the origin, and for $k=1$ the inequality turns to equality. If $p=0$, then the inequality reduces to the Busemann intersection inequality, and if $k=d$ -- to the Busemann random simplex inequality. We also present an affine version of this inequality which similarly generalizes the Schneider inequality and the Blaschke-Grömer inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源