论文标题
强大的配方,用于分配强大的机会约束程序,左侧不确定性在瓦斯堡的歧义下
Strong Formulations for Distributionally Robust Chance-Constrained Programs with Left-Hand Side Uncertainty under Wasserstein Ambiguity
论文作者
论文摘要
在瓦斯恒星模棱两可的歧义集中,分布强大的机会受限的计划(DR-CCP)表现出吸引人的样本外部性能,并承认基于圆锥形约束的基于$ $ m $ $ m $ $ m $的混合成员编程(MIP)重新启动。但是,随着样本量增加,所产生的配方通常会遇到可伸缩性问题。为了解决这一缺点,我们得出了更强的配方,可以很好地扩展相对于样本量。我们的重点是在所谓的左侧(LHS)不确定性下的歧义集,其中不确定参数会影响定义安全集的线性不等式中决策变量的系数。安全集定义中的不确定参数与可变系数之间的相互作用在加强原始的大$ m $配方时会引起挑战。通过利用名义机会约束程序与DR-CCP之间的联系,我们获得了具有显着增强功能的强大配方。特别是,通过这种联系,我们得出了线性数量的有效不平等,可以立即将其添加到制剂中,以在变量的原始空间中获得改进的公式。此外,我们建议一种基于分位数的加强程序,使我们能够大大减少大型$ M $系数。此外,基于此过程,我们提出了一类指数类的不等式类别,可以在分支和切割框架内有效分离。基于分位数的加强程序可能很昂贵。因此,对于涵盖和包装类型问题的特殊情况,我们确定了执行此程序的有效方案。我们证明了我们提出的公式在两个问题上的计算功效,即随机投资组合优化和资源计划。
Distributionally robust chance-constrained programs (DR-CCP) over Wasserstein ambiguity sets exhibit attractive out-of-sample performance and admit big-$M$-based mixed-integer programming (MIP) reformulations with conic constraints. However, the resulting formulations often suffer from scalability issues as sample size increases. To address this shortcoming, we derive stronger formulations that scale well with respect to the sample size. Our focus is on ambiguity sets under the so-called left-hand side (LHS) uncertainty, where the uncertain parameters affect the coefficients of the decision variables in the linear inequalities defining the safety sets. The interaction between the uncertain parameters and the variable coefficients in the safety set definition causes challenges in strengthening the original big-$M$ formulations. By exploiting the connection between nominal chance-constrained programs and DR-CCP, we obtain strong formulations with significant enhancements. In particular, through this connection, we derive a linear number of valid inequalities, which can be immediately added to the formulations to obtain improved formulations in the original space of variables. In addition, we suggest a quantile-based strengthening procedure that allows us to reduce the big-$M$ coefficients drastically. Furthermore, based on this procedure, we propose an exponential class of inequalities that can be separated efficiently within a branch-and-cut framework. The quantile-based strengthening procedure can be expensive. Therefore, for the special case of covering and packing type problems, we identify an efficient scheme to carry out this procedure. We demonstrate the computational efficacy of our proposed formulations on two classes of problems, namely stochastic portfolio optimization and resource planning.