论文标题

无轮形图的最大光谱半径

The maximum spectral radius of wheel-free graphs

论文作者

Zhao, Yanhua, Huang, Xueyi, Lin, Huiqiu

论文摘要

车轮图是通过将单个顶点连接到周期的所有顶点来形成的图。如果图形不包含任何车轮图作为子图形,则称为图形。 Nikiforov在2010年提出了一个Brualdi-Solheid-Turán类型问题:订单$ n $的最大光谱半径是什么,不包含特定类型的子图。在本文中,我们研究了无轮形图的Brualdi-Solheid-Turán类型问题,并确定了无轮级$ n $的最大(无标志性Laplacian)光谱半径。此外,我们表征了极端图。

A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A graph is called wheel-free if it does not contain any wheel graph as a subgraph. In 2010, Nikiforov proposed a Brualdi-Solheid-Turán type problem: what is the maximum spectral radius of a graph of order $n$ that does not contain subgraphs of particular kind. In this paper, we study the Brualdi-Solheid-Turán type problem for wheel-free graphs, and we determine the maximum (signless Laplacian) spectral radius of a wheel-free graph of order $n$. Furthermore, we characterize the extremal graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源