论文标题

基于图的人类相互作用检测的基于图的交互推理

A Graph-based Interactive Reasoning for Human-Object Interaction Detection

论文作者

Yang, Dongming, Zou, Yuexian

论文摘要

人类对象相互作用(HOI)检测致力于通过推断人,动词,object>的三胞胎来学习人类如何与周围的物体相互作用。但是,最近的HOI检测方法主要依赖于其他注释(例如,人姿势),而忽略了超越卷积的强大互动推理。在本文中,我们提出了一种基于图形的新型交互推理模型,称为“交互式图”(Abbr。ingraph)推断HOI,其中有效利用了视觉目标之间隐含的交互式语义。提出的模型由一个项目函数组成,该项目功能将相关的目标从卷积空间映射到基于图的语义空间,一个消息传递过程在所有节点之间传播语义以及一个更新功能,将合理的节点转换回卷积空间。此外,我们构建了一个新的框架来组装用于检测HOI的内部模型,即In-Graphnet。除了分别使用实例功能推断HOI之外,该框架还通过整合两级内部图形,即,即范围内和实例范围内的内部图表,在视觉目标之间动态解析了成对的交互式语义。我们的框架是端到端的训练,没有人类姿势等昂贵的注释。广泛的实验表明,我们提出的框架在V-Coco和HICO-DET基准测试基准上都优于现有的HOI检测方法,并将基线提高约9.4%和15%,从而验证其在检测HOIS中的效率。

Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects via inferring triplets of < human, verb, object >. However, recent HOI detection methods mostly rely on additional annotations (e.g., human pose) and neglect powerful interactive reasoning beyond convolutions. In this paper, we present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs, in which interactive semantics implied among visual targets are efficiently exploited. The proposed model consists of a project function that maps related targets from convolution space to a graph-based semantic space, a message passing process propagating semantics among all nodes and an update function transforming the reasoned nodes back to convolution space. Furthermore, we construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet. Beyond inferring HOIs using instance features respectively, the framework dynamically parses pairwise interactive semantics among visual targets by integrating two-level in-Graphs, i.e., scene-wide and instance-wide in-Graphs. Our framework is end-to-end trainable and free from costly annotations like human pose. Extensive experiments show that our proposed framework outperforms existing HOI detection methods on both V-COCO and HICO-DET benchmarks and improves the baseline about 9.4% and 15% relatively, validating its efficacy in detecting HOIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源