论文标题

使用平方逆罗森布拉特传输的张量训练的深度组成

Deep composition of tensor-trains using squared inverse Rosenblatt transports

论文作者

Cui, Tiangang, Dolgov, Sergey

论文摘要

表征顽固性的高维随机变量是随机计算中的基本挑战之一。最近的传输地图激增为数学基础和新见解提供了解决这一挑战的新见解,该挑战通过将棘手的随机变量与可拖动的参考随机变量相连。本文概括了Dolgov等人最近开发的反罗森布拉特转运的功能张量训练近似。 (Stat Comput 30:603--625,2020)到一类广泛的高维非负函数,例如不当概率密度函数。首先,我们扩展了逆罗森布拉特变换,以使运输能够运输到均匀度量以外的一般参考度量。我们开发了一个有效的程序,以从保持单调性的平方张量训练分解中计算该传输。更重要的是,我们将提出的订单保护功能张量传输整合到受深神经网络分层结构启发的嵌套变量转换框架中。所得的深度逆罗氏运输可显着扩展张量近似值和将图传输到具有复杂非线性相互作用和浓缩密度函数的随机变量。我们证明了所提出的方法在统计学习和不确定性量化中的一系列应用中的效率,包括动态系统的参数估计以及受部分微分方程约束的逆问题。

Characterising intractable high-dimensional random variables is one of the fundamental challenges in stochastic computation. The recent surge of transport maps offers a mathematical foundation and new insights for tackling this challenge by coupling intractable random variables with tractable reference random variables. This paper generalises the functional tensor-train approximation of the inverse Rosenblatt transport recently developed by Dolgov et al. (Stat Comput 30:603--625, 2020) to a wide class of high-dimensional non-negative functions, such as unnormalised probability density functions. First, we extend the inverse Rosenblatt transform to enable the transport to general reference measures other than the uniform measure. We develop an efficient procedure to compute this transport from a squared tensor-train decomposition which preserves the monotonicity. More crucially, we integrate the proposed order-preserving functional tensor-train transport into a nested variable transformation framework inspired by the layered structure of deep neural networks. The resulting deep inverse Rosenblatt transport significantly expands the capability of tensor approximations and transport maps to random variables with complicated nonlinear interactions and concentrated density functions. We demonstrate the efficiency of the proposed approach on a range of applications in statistical learning and uncertainty quantification, including parameter estimation for dynamical systems and inverse problems constrained by partial differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源