论文标题

使用机器学习和人工智能来预测人群全血数量的SARS-COV-2感染

Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population

论文作者

Banerjee, Abhirup, Ray, Surajit, Vorselaars, Bart, Kitson, Joanne, Mamalakis, Michail, Weeks, Simonne, Baker, Mark, Mackenzie, Louise S.

论文摘要

自2019年12月以来,新型的冠状病毒SARS-COV-2被确定为大流行Covid-19的原因。早期症状与其他常见疾病(例如普通感冒和流感,进行早期筛查和诊断)重叠是卫生从业人员的关键目标。该研究的目的是使用机器学习(ML),人工神经网络(ANN)和简单的统计检验,以识别来自全血数量的SARS-COV-2阳性患者,而无需了解症状或个人病史。分析和培训中包含的数据集包含匿名的全血数量,来自巴西圣保罗的以色列阿尔伯特·爱因斯坦医院的患者,以及在访问医院期间收集样品以进行SARS-COV-2 RT-PCR测试。患者数据被医院匿名,临床数据被标准化为平均值为零,单位标准偏差。该数据被公开,目的是允许研究人员开发方法,使医院能够快速预测并有可能识别SARS-COV-2阳性患者。我们发现,有了全血的随机森林,浅层学习和灵活的ANN模型,可以预测常规病房人群之间具有高精度的SARS-COV-2患者(AUC = 94-95%),而未入院或社区的患者(AUC = 80-86%)。在这里,AUC是接收器操作特性曲线下的区域,也是模型性能的度量。此外,可以使用简单的4次血液计数组合,可用于社区中患者的AUC为85%。来自SARS-COV-2阳性患者不同血液参数的归一化数据表现出血小板,白细胞,嗜酸性粒细胞,嗜碱性粒细胞和淋巴细胞的降低以及单核细胞的增加。

Since December 2019 the novel coronavirus SARS-CoV-2 has been identified as the cause of the pandemic COVID-19. Early symptoms overlap with other common conditions such as common cold and Influenza, making early screening and diagnosis are crucial goals for health practitioners. The aim of the study was to use machine learning (ML), an artificial neural network (ANN) and a simple statistical test to identify SARS-CoV-2 positive patients from full blood counts without knowledge of symptoms or history of the individuals. The dataset included in the analysis and training contains anonymized full blood counts results from patients seen at the Hospital Israelita Albert Einstein, at São Paulo, Brazil, and who had samples collected to perform the SARS-CoV-2 rt-PCR test during a visit to the hospital. Patient data was anonymised by the hospital, clinical data was standardized to have a mean of zero and a unit standard deviation. This data was made public with the aim to allow researchers to develop ways to enable the hospital to rapidly predict and potentially identify SARS-CoV-2 positive patients. We find that with full blood counts random forest, shallow learning and a flexible ANN model predict SARS-CoV-2 patients with high accuracy between populations on regular wards (AUC = 94-95%) and those not admitted to hospital or in the community (AUC=80-86%). Here, AUC is the Area Under the receiver operating characteristics Curve and a measure for model performance. Moreover, a simple linear combination of 4 blood counts can be used to have an AUC of 85% for patients within the community. The normalised data of different blood parameters from SARS-CoV-2 positive patients exhibit a decrease in platelets, leukocytes, eosinophils, basophils and lymphocytes, and an increase in monocytes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源