论文标题

RGB-D显着对象检测具有跨模式调制和选择

RGB-D Salient Object Detection with Cross-Modality Modulation and Selection

论文作者

Li, Chongyi, Cong, Runmin, Piao, Yongri, Xu, Qianqian, Loy, Chen Change

论文摘要

我们提出了一种有效的方法,可以逐步整合和完善RGB-D显着对象检测(SOD)的跨模式互补。提出的网络主要解决了两个具有挑战性的问题:1)如何有效地整合RGB图像及其相应深度图的互补信息,以及2)如何适应性地选择更多与显着性相关的功能。首先,我们提出了一个跨模式特征调制(CMFM)模块,以通过将深度特征作为先验来增强特征表示形式,该特征将RGB-D数据的互补关系建模。其次,我们提出了一个自适应特征选择(AFS)模块,以选择与显着性相关的特征并抑制下方功能。 AFS模块利用了多模式的空间特征融合,并考虑了通道特征的自模式和跨模式相互依存关系。第三,我们采用显着性引导的位置边缘注意力(SG-PEA)模块,以鼓励我们的网络更多地关注与显着性相关的区域。以上称为CMMS块的整个模块以粗到精细的方式促进了显着特征的完善。再加上自下而上的推断,精致的显着性功能可以准确且边缘保护草皮。广泛的实验表明,我们的网络在六个流行的RGB-D SOD基准上优于最先进的显着探测器。

We present an effective method to progressively integrate and refine the cross-modality complementarities for RGB-D salient object detection (SOD). The proposed network mainly solves two challenging issues: 1) how to effectively integrate the complementary information from RGB image and its corresponding depth map, and 2) how to adaptively select more saliency-related features. First, we propose a cross-modality feature modulation (cmFM) module to enhance feature representations by taking the depth features as prior, which models the complementary relations of RGB-D data. Second, we propose an adaptive feature selection (AFS) module to select saliency-related features and suppress the inferior ones. The AFS module exploits multi-modality spatial feature fusion with the self-modality and cross-modality interdependencies of channel features are considered. Third, we employ a saliency-guided position-edge attention (sg-PEA) module to encourage our network to focus more on saliency-related regions. The above modules as a whole, called cmMS block, facilitates the refinement of saliency features in a coarse-to-fine fashion. Coupled with a bottom-up inference, the refined saliency features enable accurate and edge-preserving SOD. Extensive experiments demonstrate that our network outperforms state-of-the-art saliency detectors on six popular RGB-D SOD benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源