论文标题

Riemann的非差异功能和二维曲率流动

Riemann's non-differentiable function and the binormal curvature flow

论文作者

Banica, Valeria, Vega, Luis

论文摘要

我们在Riemann在1860年代引入的著名分析对象以及IT的某些变体之间建立了联系,而非线性几何PDE(二手曲率流量)。结果,该分析对象具有非明显的非线性几何解释。我们记得,二维流是涡旋丝演化的标准模型。我们证明了具有平滑轨迹的双向流动的溶液的存在,这些轨迹与需要的曲线一样近,具有多型曲线行为。最后,我们表明,这种行为属于弗里施和巴黎的多重形式,这些形式构想以控制湍流。

We make a connection between a famous analytical object introduced in the 1860s by Riemann, as well as some variants of it, and a nonlinear geometric PDE, the binormal curvature flow. As a consequence this analytical object has a non-obvious nonlinear geometric interpretation. We recall that the binormal flow is a standard model for the evolution of vortex filaments. We prove the existence of solutions of the binormal flow with smooth trajectories that are as close as desired to curves with a multifractal behavior. Finally, we show that this behavior falls within the multifractal formalism of Frisch and Parisi, which is conjectured to govern turbulent fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源