论文标题

模拟量子干扰使用广义的ISING机器

Emulating Quantum Interference with Generalized Ising Machines

论文作者

Chowdhury, Shuvro, Camsari, Kerem Y., Datta, Supriyo

论文摘要

本文的主要目的是提出一个精确的一般过程,将任何量子门映射到一个概率P-bits网络上,该网络可以接收两个值0和1之一。第一个$ n $ p-bits代表输入量子器,而其他p-bits则表示连续的镀金操作后的量子器。我们可以将此结构视为玻尔兹曼机器,其状态每种状态都代表了从Quarbits初始配置到最终配置的Feynman路径。每个这样的路径都有一个复杂的振幅$ψ$,可以与复杂的能量相关联。该能量的实际部分可用于以通常的方式生成Feynman路径的样本,而假想部分是通过将样品视为复杂实体来解释的,与普通的Boltzmann机器不同,样品是正面的。量子门通常具有纯粹的假想能量函数,所有配置都具有相同的概率,并且无法利用采样技术。但是,如果我们可以使用合适的转换来引入能量功能中的真实部分,那么可以利用强大的采样算法(如Gibbs采样)来获得可接受的结果,并以较少的样本少,甚至可以使用$ ND $逃脱指数缩放。然后,可以补充这种算法加速度,例如Ising机器(例如Ising机器),可以通过大量的并行性,管道式和无钟的混合信号操作来获得大量样品,并通过代码签名的电路和架构与算法相匹配。我们将任意量子电路映射到具有复杂能量功能的玻尔兹曼机器的结果,应有助于用概率资源来推动量子电路的模拟性界限,并将其与Nisq-ers量子计算机进行比较。

The primary objective of this paper is to present an exact and general procedure for mapping any sequence of quantum gates onto a network of probabilistic p-bits which can take on one of two values 0 and 1. The first $n$ p-bits represent the input qubits, while the other p-bits represent the qubits after the application of successive gating operations. We can view this structure as a Boltzmann machine whose states each represent a Feynman path leading from an initial configuration of qubits to a final configuration. Each such path has a complex amplitude $ψ$ which can be associated with a complex energy. The real part of this energy can be used to generate samples of Feynman paths in the usual way, while the imaginary part is accounted for by treating the samples as complex entities, unlike ordinary Boltzmann machines where samples are positive. Quantum gates often have purely imaginary energy functions for which all configurations have the same probability and one cannot take advantage of sampling techniques. However, if we can use suitable transformations to introduce a real part in the energy function then powerful sampling algorithms like Gibbs sampling can be harnessed to get acceptable results with far fewer samples and perhaps even escape the exponential scaling with $nd$. This algorithmic acceleration can then be supplemented with special-purpose hardware accelerators like Ising Machines which can obtain a very large number of samples per second through a combination of massive parallelism, pipelining, and clockless mixed-signal operation made possible by codesigning circuits and architectures to match the algorithm. Our results for mapping an arbitrary quantum circuit to a Boltzmann machine with a complex energy function should help push the boundaries of the simulability of quantum circuits with probabilistic resources and compare them with NISQ-era quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源