论文标题
$ d> 2 $全息cfts的最小扭动opes的模型依赖性
Model-Dependence of Minimal-Twist OPEs in $d>2$ Holographic CFTs
论文作者
论文摘要
在最近在高维形式的野外理论(CFTS)中使用大型中央电荷$ C_T $的重灯相关器的工作后,我们使用CFT和GREATE中的参数来阐明应力张量张量复合主要操作员的特性,$ [T^M] $。我们提供了有效的证据,表明$ \ langle \ mathcal {o} _l \ Mathcal {o} _l [t^m] \ rangle $,其中$ \ mathcal {o} _l $是任何光主要操作员,其中任何光主要操作员与纯粹的重力动作无关。接下来,由于ADS有效场理论和相应的双CFT中的其他相互作用,我们考虑对这种耦合进行更正。当CFT包含一个非零的三点耦合$ \ langle tt \ Mathcal {o} _l \ rangle $时,三点耦合$ \ langle \ langle \ mathcal {o} _l {o} _l \ mathcal \ mathcal {o} _l [o} _l [t^2] tt \ Mathcal {o} _l \ rangle \ sim \ sqrt {c_t} $。这种缩放是由Dilaton,原型超级重压的Kaluza-Klein模式以及超对称CFT的应力张量多重组中的标量。涉及Graviton的四分之一派生相互作用,以及$ \ Mathcal {O} _l $的光探针字段二也可以修改最小扭动耦合;这些本地交互可以通过在树级上集成一个旋转-GEQ 2 $散装字段或在循环级别上的任何旋转$ \ ell $来生成。这些结果表明,最小扭动的OPE系数如何取决于高自旋间隙量表,甚至在扰动上。
Following recent work on heavy-light correlators in higher-dimensional conformal field theories (CFTs) with a large central charge $C_T$, we clarify the properties of stress tensor composite primary operators of minimal twist, $[T^m]$, using arguments in both CFT and gravity. We provide an efficient proof that the three-point coupling $\langle \mathcal{O}_L\mathcal{O}_L [T^m]\rangle$, where $\mathcal{O}_L$ is any light primary operator, is independent of the purely gravitational action. Next, we consider corrections to this coupling due to additional interactions in AdS effective field theory and the corresponding dual CFT. When the CFT contains a non-zero three-point coupling $\langle TT \mathcal{O}_L\rangle$, the three-point coupling $\langle \mathcal{O}_L\mathcal{O}_L [T^2]\rangle$ is modified at large $C_T$ if $\langle TT\mathcal{O}_L \rangle \sim \sqrt{C_T}$. This scaling is obeyed by the dilaton, by Kaluza-Klein modes of prototypical supergravity compactifications, and by scalars in stress tensor multiplets of supersymmetric CFTs. Quartic derivative interactions involving the graviton and the light probe field dual to $\mathcal{O}_L$ can also modify the minimal-twist couplings; these local interactions may be generated by integrating out a spin-$\ell \geq 2$ bulk field at tree level, or any spin $\ell$ at loop level. These results show how the minimal-twist OPE coefficients can depend on the higher-spin gap scale, even perturbatively.