论文标题
$β$ -EUP $ _3 $中的野外诱导的金属绝缘体过渡
Field-induced Metal-Insulator Transition in $β$-EuP$_3$
论文作者
论文摘要
金属 - 绝缘体过渡(MIT)是相关电子系统中最明显的现象之一。然而,这种过渡很少被外部磁场引起,因为与电荷间隙相比,场尺度通常太小。在本文中,我们介绍了磁场驱动的MIT在磁性半导体$β$ -EUP $ _3 $中的观察。同时,我们以极端的方式发现了巨大的磁性(CMR):在磁场小于3特斯拉的磁场中,电阻在2 kelvins处下降。我们将这种引人注目的麻省理器归功于野外驱动的从抗铁磁和顺磁绝缘体到自旋极化拓扑半学的过渡,其中$ \ mathrm {eu^{2+}} $ cations $ cypation和Spin-Orbital coupling(SOC)的自旋配置起着巨大的作用。作为一种含磷酸的化合物,可以通过现场的应用来控制电性能,因此$β$ -EUP $ _3 $可以用作基础研究甚至将来电子产品的诱人材料。
Metal-insulator transition (MIT) is one of the most conspicuous phenomena in correlated electron systems. However such transition has rarely been induced by an external magnetic field as the field scale is normally too small compared with the charge gap. In this paper we present the observation of a magnetic-field-driven MIT in a magnetic semiconductor $β$-EuP$_3$. Concomitantly, we found a colossal magnetoresistance (CMR) in an extreme way: the resistance drops billionfold at 2 kelvins in a magnetic field less than 3 teslas. We ascribe this striking MIT as a field-driven transition from an antiferromagnetic and paramagnetic insulator to a spin-polarized topological semimetal, in which the spin configuration of $\mathrm{Eu^{2+}}$ cations and spin-orbital coupling (SOC) play a crucial role. As a phosphorene-bearing compound whose electrical properties can be controlled by the application of field, $β$-EuP$_3$ may serve as a tantalizing material in the basic research and even future electronics.