论文标题
拉普拉斯(Laplacian)的标准球和特征值的乘积收敛
Convergence to the Product of the Standard Spheres and Eigenvalues of the Laplacian
论文作者
论文摘要
我们向标准球的乘积显示了一个Gromov-Hausdorff近似值,$ s^{n-p} \ times s^p $对于riemannian歧管,在拉普拉斯(Laplacian)在功能和形式上的特征性曲率上,带有正ricci曲率的带有正ricci曲率的曲线。
We show a Gromov-Hausdorff approximation to the product of the standard spheres $S^{n-p}\times S^p$ for Riemannian manifolds with positive Ricci curvature under some pinching condition on the eigenvalues of the Laplacian acting on functions and forms.