论文标题

在轨道空间中没有扭转

Absence of torsion in orbit space

论文作者

Sharma, Sampat

论文摘要

在本文中,我们证明,如果$ r $是尺寸$ d的本地环,$ $ d \ geq 2 $和$ \ frac {1} {d!} \ in r $ in r $,则组$ \ frac {um_ {d+1}(d+1}(r [x]}(r [x])}} gl_ {1}(r)。$我们还证明,如果$ r $是常规的尺寸环$ d,$ $ $ d \ geq 2 $和$ \ frac {1} {d!} \在r $中,则$ e_ {d+1}(d+1}(r)$在$ e_ {d+1}(r)上,$ _ {d+1} $ and $ and $ and $ and $ can d+and $ r)在$ um_ {d+1}(r [x])上进行过渡。$

In this paper, we prove that if $R$ is a local ring of dimension $d,$ $d\geq 2$ and $\frac{1}{d!}\in R$ then the group $\frac{Um_{d+1}(R[X])}{E_{d+1}(R[X])}$ has no $k$-torsion, provided $k\in GL_{1}(R).$ We also prove that if $R$ is a regular ring of dimension $d,$ $d\geq 2$ and $\frac{1}{d!}\in R$ such that $E_{d+1}(R)$ acts transitively on $Um_{d+1}(R)$ then $E_{d+1}(R[X])$ acts transitively on $Um_{d+1}(R[X]).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源