论文标题
追溯性如何影响不连贯的前馈环的行为
How Retroactivity Affects the Behavior of Incoherent Feed-Forward Loops
论文作者
论文摘要
不一致的进料回路(IFFL)是一个网络图案,以其加速反应和产生脉冲的能力而闻名。尽管对IFFL的功能进行了充分的研究,但IFFL的大多数先前的计算分析都使用了普通微分方程(ODE)模型,其中未考虑在上游转录因子(TF)的动力学上施加的追溯性效应下游结合位点的效果。了解IFFL在具有高水平的追溯性的情况下的行为,例如,在用高拷贝质粒转化/转染的细胞中或在TF与一个或多个功能目标位点结合许多高亲和力结合位点的真核细胞中,这仍然是一个悬而未决的问题。在这里,我们通过模拟和比较具有不同级别的追溯性的ODE模型来研究IFFL的行为。我们发现,IFFL的追溯性增加可以增加,减少或保持网络的响应时间和脉冲幅度恒定。这表明,可以利用增强的追溯性,传统上被认为是设计强大合成系统的障碍,可以利用以提高IFFL的性能。我们将IFFL的行为与阴性自动调节环(另一个符号敏感的响应加速网络基序)进行比较,并发现在负自动调节电路中增加追溯性的增加只能减慢响应。负面调节循环无法灵活地处理追溯性的能力可能导致其在真核组织中相对于细菌调节网络的丰度较低,这与两种细胞类型的IFFL的大量丰度形成了鲜明的对比。
An incoherent feed-forward loop (IFFL) is a network motif known for its ability to accelerate responses and generate pulses. Though functions of IFFLs are well studied, most previous computational analysis of IFFLs used ordinary differential equation (ODE) models where retroactivity, the effect downstream binding sites exert on the dynamics of an upstream transcription factor (TF), was not considered. It remains an open question to understand the behavior of IFFLs in contexts with high levels of retroactivity, e.g., in cells transformed/transfected with high-copy plasmids, or in eukaryotic cells where a TF binds to numerous high-affinity binding sites in addition to one or more functional target sites. Here we study the behavior of IFFLs by simulating and comparing ODE models with different levels of retroactivity. We find that increasing retroactivity in an IFFL can increase, decrease, or keep the network's response time and pulse amplitude constant. This suggests that increasing retroactivity, traditionally considered as an impediment to designing robust synthetic systems, could be exploited to improve the performance of IFFLs. We compare the behaviors of IFFLs to negative autoregulatory loops, another sign-sensitive response-accelerating network motif, and find that increasing retroactivity in a negative autoregulated circuit can only slow the response. The inability of a negative autoregulatory loop to flexibly handle retroactivity may have contributed to its lower abundance in eukaryotic relative to bacterial regulatory networks, a sharp contrast to the significant abundance of IFFLs in both cell types.