论文标题
Li-Wang标准在Covid-19的五维流行模型中的应用。第一部分
Application of the criterion of Li-Wang to a five dimensional epidemic model of COVID-19. Part I
论文作者
论文摘要
传播在单个宿主种群中的许多流行病模型的动力学表明阈值现象。如果基本的繁殖数量R0低于统一,则无病平衡P0在可行的地区全球稳定,并且该疾病总是消失。如果R0> 1,则是独特的流行平衡P?在可行区域内部渐近渐近稳定,如果最初存在该疾病,该疾病将持续存在。在本文(第I部分)中,我们重新研究了由Nita H. Shah,Ankush H. Suthar和Ekta N. Jayswal构建的数学COVID-19模型的稳定性或不稳定性的研究。我们使用Li-Wang的标准来稳定与其模型相关的第二个添加剂化合物矩阵上的矩阵[li-wang]。在第二篇论文(第二部分)中,为了控制COVID-19系统,即迫使轨迹进入Equilibria,我们将添加一些具有不确定参数的控制参数,以稳定本文中研究的五维COVID-19系统。基于复合矩阵理论,我们再次应用于[intissar] Li-Wang的标准来研究具有不确定参数的Covid-19系统平衡点的稳定性。在第二部分中,所有复杂的技术计算包括第I部分中的所有计算。
The dynamics of many epidemic models for infectious diseases that spread in a single host population demonstrate a threshold phenomenon. If the basic reproduction number R0 is below unity, the disease-free equilibrium P0 is globally stable in the feasible region and the disease always dies out. If R0 > 1, a unique endemic equilibrium P? is globally asymptotically stable in the interior of the feasible region and the disease will persist at the endemic equilibrium if it is initially present. In this paper (Part I), we reinvestigate the study of the stability or the non stability of a mathematical Covid-19 model constructed by Nita H. Shah, Ankush H. Suthar and Ekta N. Jayswal. We use a criterion of Li-Wang for stability of matrices [Li-Wang] on the second additive compound matrix associated to their model. In second paper (Part II), In order to control the Covid-19 system, i.e., force the trajectories to go to the equilibria we will add some control parameters with uncertain parameters to stabilize the five-dimensional Covid-19 system studied in this paper. Based on compound matrices theory, we apply in [Intissar] again the criterion of Li-Wang to study the stability of equilibrium points of Covid-19 system with uncertain parameters. In this part II, all sophisticated technical calculations including those in part I are given in appendices.