论文标题
云广播:基于卫星的数据集和用于预测云的基线
CloudCast: A Satellite-Based Dataset and Baseline for Forecasting Clouds
论文作者
论文摘要
预测云的形成和发展是现代天气预测系统的核心要素。由于其在地球气候系统中的内在作用,因此不正确的云预测会导致天气预报的总体准确性的严重不确定性。由于高分辨率数据集缺乏,在全球范围内进行了许多历史观察,因此很少有研究从机器学习观点解决这个具有挑战性的问题。在本文中,我们提出了一个基于卫星的新型数据集,称为``Cloudcast''。它由70,080张图像组成,其中有10种不同的云类型,用于以像素级别注释的多层大气层。数据集的空间分辨率为928 x 1530像素(每个像素3x3 km),间隔为2017-01-01至2018-12-31的帧之间的15分钟间隔。所有框架均以欧洲为中心和预计。为了补充数据集,我们通过当前最新的视频预测方法进行评估研究,例如卷积长的短期记忆网络,生成的对抗网络和基于光流的外推方法。由于对视频预测的评估在实践中很困难,因此我们旨在在空间和时间领域进行彻底评估。我们的基准模型显示出令人鼓舞的结果,但有足够的改进空间。这是第一个具有高分辨率云类型的全球公共尺度数据集,具有高分辨率的范围粒度,这对作者的最佳知识。
Forecasting the formation and development of clouds is a central element of modern weather forecasting systems. Incorrect clouds forecasts can lead to major uncertainty in the overall accuracy of weather forecasts due to their intrinsic role in the Earth's climate system. Few studies have tackled this challenging problem from a machine learning point-of-view due to a shortage of high-resolution datasets with many historical observations globally. In this paper, we present a novel satellite-based dataset called ``CloudCast''. It consists of 70,080 images with 10 different cloud types for multiple layers of the atmosphere annotated on a pixel level. The spatial resolution of the dataset is 928 x 1530 pixels (3x3 km per pixel) with 15-min intervals between frames for the period 2017-01-01 to 2018-12-31. All frames are centered and projected over Europe. To supplement the dataset, we conduct an evaluation study with current state-of-the-art video prediction methods such as convolutional long short-term memory networks, generative adversarial networks, and optical flow-based extrapolation methods. As the evaluation of video prediction is difficult in practice, we aim for a thorough evaluation in the spatial and temporal domain. Our benchmark models show promising results but with ample room for improvement. This is the first publicly available global-scale dataset with high-resolution cloud types on a high temporal granularity to the authors' best knowledge.