论文标题
在块图的光谱半径上,其所有大小相同的块
On the spectral radius of block graphs having all their blocks of the same size
论文作者
论文摘要
令$ \ mathcal {b}(n,q)$为$ n $顶点上的块图类别,其所有块具有相同的大小。我们证明,如果$ g \ in \ Mathcal {b}(n,q)$最多具有三个成对相邻的切割顶点,则最小频谱半径$ρ(g)$是在唯一的图表上获得的。此外,当$ g \ in \ Mathcal {b}(b}(n,q)$时,我们会以$ρ(g)$提出下限。
Let $\mathcal{B}(n,q)$ be the class of block graphs on $n$ vertices having all their blocks of the same size. We prove that if $G\in \mathcal{B}(n,q)$ has at most three pairwise adjacent cut vertices then the minimum spectral radius $ρ(G)$ is attained at a unique graph. In addition, we present a lower bound for $ρ(G)$ when $G\in \mathcal{B}(n,q)$.