论文标题

$ USP(32)$特殊大统一

$USp(32)$ Special Grand Unification

论文作者

Yamatsu, Naoki

论文摘要

我们讨论了一个基于$ USP(32)$ ut Gauge群体的大统一理论(GUT),包括特殊子组。基于$(32)$ ut量规组的肠道已在六维(6d)orbifold空间上进行了讨论,$ m^4 \ times t^2/\ mathbb {z} _2 $。它的灵感来自$ so(32)$ string理论背后的$ su(16)$ ut,其$ su(16)$被打破到特殊的子组$ SO(10)$。替代方向是将$ su(16)$量规组嵌入到$ USP(32)$ ut Gauge组中,该集团的灵感来自非苏格拉upermmetric symplectic-type $ usp(32)$ string理论。在$ USP(32)$ ut中,将一代SM费用嵌入到6D散装的Weyl fermion中,以$ USP(32)$定义表示形式。对于三代模型,散装和固定点上的所有6D和4D量规异常被取消,而在低能量下,没有异国情调的手性费米子。 SM Higgs标量嵌入在$ USP(32)$ aepaint表示中的6D散装标量字段中。

We discuss a grand unified theory (GUT) based on a $USp(32)$ GUT gauge group broken to its subgroups including a special subgroup. A GUT based on an $SO(32)$ GUT gauge group has been discussed on six-dimensional (6D) orbifold space $M^4\times T^2/\mathbb{Z}_2$. It is inspired by the $SO(32)$ string theory behind the $SU(16)$ GUT whose $SU(16)$ is broken to a special subgroup $SO(10)$. Alternative direction is to embed an $SU(16)$ gauge group into a $USp(32)$ GUT gauge group, which is inspired by a non-supersymmetric symplectic-type $USp(32)$ string theory. In a $USp(32)$ GUT, one generation of the SM fermions is embedded into a 6D bulk Weyl fermion in a $USp(32)$ defining representation. For a three generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies. The SM Higgs scalar is embedded into a 6D bulk scalar field in a $USp(32)$ adjoint representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源