论文标题

分布式强化学习有针对性的抓地力,并具有对移动操纵器的主动愿景

Distributed Reinforcement Learning of Targeted Grasping with Active Vision for Mobile Manipulators

论文作者

Fujita, Yasuhiro, Uenishi, Kota, Ummadisingu, Avinash, Nagarajan, Prabhat, Masuda, Shimpei, Castro, Mario Ynocente

论文摘要

开发可以在非结构化环境中执行各种操纵任务的个人机器人,需要解决机器人握把系统的几个挑战。据我们所知,我们通过介绍第一个基于RL的系统来朝着更广泛的目标迈出了一步,该系统可以(a)可以(a)实现有针对性的掌握概括以概括为看不见的对象,(b)学习具有闭塞对象杂乱的场景的复杂抓地策略,以及(c)通过其可移动的手腕摄像机来更好地定位摄像头,以更好地定位镜头。该系统以该对象的单个,任意置置的RGB图像的形式告知系统,从而使系统能够概括到不看到对象而无需重新训练。为了实现这样的系统,我们结合了深度强化学习的几个进步,并使用同步SGD提出了一个大规模的分布式培训系统,该SGD无缝地扩展到多节点,多GPU基础架构,以使快速原型制作更轻松。我们在模拟环境中训练和评估我们的系统,确定以提高性能,分析其行为并转移到现实世界设置的关键组成部分。

Developing personal robots that can perform a diverse range of manipulation tasks in unstructured environments necessitates solving several challenges for robotic grasping systems. We take a step towards this broader goal by presenting the first RL-based system, to our knowledge, for a mobile manipulator that can (a) achieve targeted grasping generalizing to unseen target objects, (b) learn complex grasping strategies for cluttered scenes with occluded objects, and (c) perform active vision through its movable wrist camera to better locate objects. The system is informed of the desired target object in the form of a single, arbitrary-pose RGB image of that object, enabling the system to generalize to unseen objects without retraining. To achieve such a system, we combine several advances in deep reinforcement learning and present a large-scale distributed training system using synchronous SGD that seamlessly scales to multi-node, multi-GPU infrastructure to make rapid prototyping easier. We train and evaluate our system in a simulated environment, identify key components for improving performance, analyze its behaviors, and transfer to a real-world setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源