论文标题

朝着辩护句子表示

Towards Debiasing Sentence Representations

论文作者

Liang, Paul Pu, Li, Irene Mengze, Zheng, Emily, Lim, Yao Chong, Salakhutdinov, Ruslan, Morency, Louis-Philippe

论文摘要

随着自然语言处理方法越来越多地在医疗保健,法律体系和社会科学等现实世界中部署,因此有必要认识到它们可能在塑造社会偏见和刻板印象中所扮演的角色。先前的工作揭示了广泛使用的涉及性别,种族,宗教和其他社会结构的单词嵌入中的社会偏见。虽然提出了一些方法来对这些单词级嵌入的嵌入进行理事,但鉴于最近向诸如Elmo和Bert等新的上下文化句子表示的转变,需要对句子级别进行辩论。在本文中,我们调查了句子级表示中社会偏见的存在,并提出了一种新方法,即发送debias,以减少这些偏见。我们表明,Send-Debias有效地消除了偏见,同时,可以保留句子级别下游任务(例如情感分析,语言可接受性和自然语言理解)上的绩效。我们希望我们的工作将激发未来的研究,以表征和消除广泛采用的NLP句子陈述中的社会偏见。

As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源