论文标题

统计量子场理论中具有旋转和加速度的统计量子场理论中的精确平衡分布:标量场

Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: scalar field

论文作者

Becattini, F., Buzzegoli, M., Palermo, A.

论文摘要

我们得出了相位空间分布函数的一般精确形式,以及在平衡时旋转和加速度的平衡量子标量场的本地算子的热期望值,而无需求解曲线坐标中的场方程。用组理论方法对密度运算符分配后,我们通过迭代方法获得了相空间分布函数作为热涡度的形式序列的确切形式,我们通过分析延续技术来计算热期望值。我们分别讨论了纯旋转和纯加速度的病例,并为无质量场的应力能量张量提供了分析结果。所发现的表达与通过在文献中已知的两种情况(或隐含)中的两种情况(或隐式)中的两个情况下,在合适的曲线坐标中求解场方程获得的确切分析解决方案一致。为了提取纯加速度案例的有限值,我们介绍了复杂函数的分析蒸馏概念。对于无质量场,所获得的电流表达式是加速度/温度比的多项式,其消失在$2π$上,完全符合Inruh效应。

We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equations in curvilinear coordinates. After factorizing the density operator with group theoretical methods, we obtain the exact form of the phase space distribution function as a formal series in thermal vorticity through an iterative method and we calculate thermal expectation values by means of analytic continuation techniques. We separately discuss the cases of pure rotation and pure acceleration and derive analytic results for the stress-energy tensor of the massless field. The expressions found agree with the exact analytic solutions obtained by solving the field equation in suitable curvilinear coordinates for the two cases at stake and already - or implicitly - known in literature. In order to extract finite values for the pure acceleration case we introduce the concept of analytic distillation of a complex function. For the massless field, the obtained expressions of the currents are polynomials in the acceleration/temperature ratios which vanish at $2π$, in full accordance with the Unruh effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源