论文标题
对宇宙场中光晕环境的强大确定
A robust determination of halo environment in the cosmic field
论文作者
论文摘要
文献中存在许多研究大规模宇宙物质分布的方法。定义宇宙网络使用的一种特别常见的方法是检查密度,速度或潜在磁场。这种方法是有利的,因为可以构建黑森矩阵,其特征向量(和特征值)表示局部崩溃或扩张的主要方向(和强度)。从技术上讲,这是通过使用固定有限网格对角线化Hessian基质来实现的。因此,所得的大规模结构定量固有地受到网格的有限分辨率的限制。在这里,我们通过引入一种使用自适应插值来确定光晕环境的新方法来克服有限网格分辨率的障碍,该方法比典型的“最近的网格点”(NGP)方法更适合分辨率。从本质上讲,我们建议每个晕圈或相关的halo或星系一次,而不是一次计算和对角度将Hessian矩阵对角度化一次。我们研究了使用我们的算法计算的特征值和特征向量方向是如何用于不同网格分辨率的NGP方法收敛的,发现我们的新方法的收敛速度更快。即分辨率的变化的效果比NGP方法要小得多。因此,我们建议这种社区将来使用的方法。
A number of methods for studying the large-scale cosmic matter distribution exist in the literature. One particularly common method employed to define the cosmic web is to examine the density, velocity or potential field. Such methods are advantageous since a Hessian matrix can be constructed whose eigenvectors (and eigenvalues) indicate the principal directions (and strength) of local collapse or expansion. Technically this is achieved by diagonalizing the Hessian matrix using a fixed finite grid. The resultant large-scale structure quantification is thus inherently limited by the grid's finite resolution. Here, we overcome the obstacle of finite grid resolution by introducing a new method to determine halo environment using an adaptive interpolation which is more robust to resolution than the typical "Nearest Grid Point" (NGP) method. Essentially instead of computing and diagonalizing the Hessian matrix once for the entire grid, we suggest doing so once for each halo or galaxy in question. We examine how the eigenvalues and eigenvector direction's computed using our algorithm and the NGP method converge for different grid resolutions, finding that our new method is convergent faster. Namely changes of resolution have a much smaller effect than in the NGP method. We therefore suggest this method for future use by the community.