论文标题
在组织病理学图像中使用注意
Self-Supervised Nuclei Segmentation in Histopathological Images Using Attention
论文作者
论文摘要
在组织病理学图像中细胞核的细分和准确定位是一个非常具有挑战性的问题,大多数现有方法都采用了监督策略。这些方法通常依赖于需要大量时间和精力的手动注释。在这项研究中,我们提出了一种自制的方法,用于分割整个幻灯片组织病理学图像。我们的方法可以假设核的大小和纹理可以确定提取斑块的放大倍数。我们表明,瓷砖的放大水平的鉴定可以产生初步的自我判断信号来定位核。我们进一步表明,通过适当地限制我们的模型,可以将有意义的分割图作为辅助输出来检索到主要放大识别任务的辅助输出。我们的实验表明,通过标准后处理,我们的方法可以胜过其他无监督的核分割方法,并在公共可用的Monuseg数据集中报告具有监督性的类似性能。我们的代码和模型可在线提供,以促进进一步的研究。
Segmentation and accurate localization of nuclei in histopathological images is a very challenging problem, with most existing approaches adopting a supervised strategy. These methods usually rely on manual annotations that require a lot of time and effort from medical experts. In this study, we present a self-supervised approach for segmentation of nuclei for whole slide histopathology images. Our method works on the assumption that the size and texture of nuclei can determine the magnification at which a patch is extracted. We show that the identification of the magnification level for tiles can generate a preliminary self-supervision signal to locate nuclei. We further show that by appropriately constraining our model it is possible to retrieve meaningful segmentation maps as an auxiliary output to the primary magnification identification task. Our experiments show that with standard post-processing, our method can outperform other unsupervised nuclei segmentation approaches and report similar performance with supervised ones on the publicly available MoNuSeg dataset. Our code and models are available online to facilitate further research.